Finetuning_Multimodal_LLM / multimodal_app.py
seemggoel's picture
Update multimodal_app.py
2fc541f verified
raw
history blame
8.42 kB
import os
import torch
import gradio as gr
from PIL import Image
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer, AutoModelForCausalLM
import torch.nn as nn
import torch.nn.functional as F
# Force CPU usage
DEVICE = torch.device("cpu")
# Use lower precision to save memory
torch.set_default_dtype(torch.float32)
class MultiModalModel(nn.Module):
def __init__(self, phi_model_name="microsoft/phi-3-mini-4k-instruct", clip_model_name="openai/clip-vit-base-patch32"):
super().__init__()
# Load LLM without quantization for CPU compatibility
self.phi = AutoModelForCausalLM.from_pretrained(
phi_model_name,
return_dict=True,
device_map="cpu",
low_cpu_mem_usage=True,
trust_remote_code=False
)
self.tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=False)
self.tokenizer.add_special_tokens({"additional_special_tokens": ["[IMG]"], "pad_token": "<pad>"})
self.phi.resize_token_embeddings(len(self.tokenizer))
# Load CLIP model
self.clip = CLIPModel.from_pretrained(clip_model_name).to(DEVICE)
self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name, use_fast=True)
# Image projection layer
image_embedding_dim = self.clip.config.projection_dim
phi_hidden_size = self.phi.config.hidden_size
self.image_projection = nn.Sequential(
nn.Linear(image_embedding_dim, image_embedding_dim * 2),
nn.GELU(),
nn.Linear(image_embedding_dim * 2, phi_hidden_size),
nn.LayerNorm(phi_hidden_size),
nn.Dropout(0.1)
)
# Initialize weights
nn.init.xavier_uniform_(self.image_projection[0].weight, gain=1.0)
nn.init.zeros_(self.image_projection[0].bias)
nn.init.xavier_uniform_(self.image_projection[2].weight, gain=1.0)
nn.init.zeros_(self.image_projection[2].bias)
def forward(self, text_input_ids, attention_mask=None, image_embedding=None, labels=None):
image_embedding = F.normalize(image_embedding, dim=-1)
projected_image = 10.0 * self.image_projection(image_embedding) # Amplify image signal
if projected_image.dim() == 2:
projected_image = projected_image.unsqueeze(1)
text_embeddings = self.phi.get_input_embeddings()(text_input_ids)
img_token_id = self.tokenizer.convert_tokens_to_ids("[IMG]")
img_token_mask = (text_input_ids == img_token_id)
fused_embeddings = text_embeddings.clone()
for i in range(fused_embeddings.shape[0]):
img_positions = img_token_mask[i].nonzero(as_tuple=True)[0]
if img_positions.numel() > 0:
fused_embeddings[i, img_positions[0], :] = projected_image[i, 0, :]
return fused_embeddings
def process_image(self, image):
"""Process an image through CLIP to get embeddings"""
image_inputs = self.clip_processor(images=image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
image_embedding = self.clip.get_image_features(**image_inputs)
return image_embedding
def generate_description(self, image, prompt_template="[IMG] A detailed description of this image is:", max_tokens=100):
"""End-to-end generation from image to text description"""
# Process image
if isinstance(image, str):
image = Image.open(image).convert("RGB")
elif not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
# Process text prompt
tokenized = self.tokenizer(prompt_template, return_tensors="pt", truncation=True, max_length=128)
text_input_ids = tokenized["input_ids"].to(DEVICE)
attention_mask = tokenized["attention_mask"].to(DEVICE)
# Get image embedding
image_embedding = self.process_image(image)
# Generate description
with torch.no_grad():
fused_embeddings = self(
text_input_ids=text_input_ids,
attention_mask=attention_mask,
image_embedding=image_embedding
)
generated_ids = self.phi.generate(
inputs_embeds=fused_embeddings,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
do_sample=False, # Greedy decoding for deterministic output
repetition_penalty=1.2
)
output = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return output
def load_weights(self, weights_path):
"""Load saved weights for the image projection layer"""
try:
state_dict = torch.load(weights_path, map_location=DEVICE)
self.image_projection.load_state_dict(state_dict)
return True
except Exception as e:
print(f"Failed to load weights: {e}")
return False
# Global model instance (will be loaded on demand)
model = None
def load_model():
"""Load the model if not already loaded"""
global model
if model is None:
print("Loading models. This may take a few minutes...")
model = MultiModalModel().to(DEVICE)
print("Models loaded!")
return model
def generate_description(image, prompt, max_length):
"""Generate a description for the given image"""
try:
model = load_model()
result = model.generate_description(image, prompt, int(max_length))
return result
except Exception as e:
return f"Error generating description: {str(e)}"
def load_projection_weights(weights_file):
"""Load custom projection weights"""
try:
model = load_model()
success = model.load_weights(weights_file.name)
if success:
return "βœ… Projection weights loaded successfully!"
else:
return "❌ Failed to load weights"
except Exception as e:
return f"❌ Error: {str(e)}"
def create_interface():
"""Create and return the Gradio interface"""
with gr.Blocks() as demo:
gr.Markdown("# Multimodal Image Description with Phi-3 Mini")
with gr.Tab("Generate"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="pil")
prompt_input = gr.Textbox(
label="Prompt (use [IMG] for image placement)",
value="[IMG] A detailed description of this image is:",
lines=2
)
max_length = gr.Slider(
minimum=10, maximum=300, value=100, step=10,
label="Maximum Output Length"
)
submit_btn = gr.Button("Generate Description")
with gr.Column():
output_text = gr.Textbox(label="Generated Description", lines=12)
submit_btn.click(
generate_description,
inputs=[image_input, prompt_input, max_length],
outputs=output_text
)
with gr.Tab("Advanced"):
gr.Markdown("### Load Custom Projection Weights")
weights_file = gr.File(label="Upload Projection Weights (.pt file)")
load_btn = gr.Button("Load Weights")
weight_status = gr.Textbox(label="Status")
load_btn.click(
load_projection_weights,
inputs=[weights_file],
outputs=weight_status
)
gr.Markdown("""
### About This Model
This app uses:
- CLIP (ViT-B/32) to extract image features
- Phi-3 Mini for text generation
- A projection layer to connect image and text spaces
For optimal performance, upload projection weights trained for this specific setup.
""")
return demo
# Optional: For testing directly from this file
if __name__ == "__main__":
demo = create_interface()
demo.queue()
demo.launch()