Spaces:
Running
on
Zero
Running
on
Zero
File size: 48,726 Bytes
96c3283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
import codecs
import math
import os
import re
from typing import List
import boto3
import gradio as gr
import numpy as np
import pandas as pd
from botocore.exceptions import ClientError
from tools.config import (
AWS_USER_POOL_ID,
CUSTOM_HEADER,
CUSTOM_HEADER_VALUE,
INPUT_FOLDER,
MAXIMUM_ZERO_SHOT_TOPICS,
OUTPUT_FOLDER,
SESSION_OUTPUT_FOLDER,
model_full_names,
model_name_map,
)
def empty_output_vars_extract_topics():
# Empty output objects before processing a new file
master_topic_df_state = pd.DataFrame()
master_topic_summary_df_state = pd.DataFrame()
master_reference_df_state = pd.DataFrame()
text_output_file = list()
text_output_file_list_state = list()
latest_batch_completed = 0
log_files_output = list()
log_files_output_list_state = list()
conversation_metadata_textbox = ""
estimated_time_taken_number = 0
file_data_state = pd.DataFrame()
reference_data_file_name_textbox = ""
display_topic_table_markdown = ""
summary_output_file_list = list()
summary_input_file_list = list()
overall_summarisation_input_files = list()
overall_summary_output_files = list()
return (
master_topic_df_state,
master_topic_summary_df_state,
master_reference_df_state,
text_output_file,
text_output_file_list_state,
latest_batch_completed,
log_files_output,
log_files_output_list_state,
conversation_metadata_textbox,
estimated_time_taken_number,
file_data_state,
reference_data_file_name_textbox,
display_topic_table_markdown,
summary_output_file_list,
summary_input_file_list,
overall_summarisation_input_files,
overall_summary_output_files,
)
def empty_output_vars_summarise():
# Empty output objects before summarising files
summary_reference_table_sample_state = pd.DataFrame()
master_topic_summary_df_revised_summaries_state = pd.DataFrame()
master_reference_df_revised_summaries_state = pd.DataFrame()
summary_output_files = list()
summarised_outputs_list = list()
latest_summary_completed_num = 0
overall_summarisation_input_files = list()
return (
summary_reference_table_sample_state,
master_topic_summary_df_revised_summaries_state,
master_reference_df_revised_summaries_state,
summary_output_files,
summarised_outputs_list,
latest_summary_completed_num,
overall_summarisation_input_files,
)
def get_or_create_env_var(var_name: str, default_value: str):
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set it to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
return value
def get_file_path_with_extension(file_path: str):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Return the basename with its extension
return basename
def get_file_name_no_ext(file_path: str):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
# print(filename_without_extension)
return filename_without_extension
def detect_file_type(filename: str):
"""Detect the file type based on its extension."""
# Strip quotes and whitespace that might have been accidentally included
filename = filename.strip().strip("'\"")
if (
(filename.endswith(".csv"))
| (filename.endswith(".csv.gz"))
| (filename.endswith(".zip"))
):
return "csv"
elif filename.endswith(".xlsx"):
return "xlsx"
elif filename.endswith(".parquet"):
return "parquet"
elif filename.endswith(".pdf"):
return "pdf"
elif filename.endswith(".jpg"):
return "jpg"
elif filename.endswith(".jpeg"):
return "jpeg"
elif filename.endswith(".png"):
return "png"
else:
raise ValueError("Unsupported file type.")
def read_file(filename: str, sheet: str = ""):
"""Read the file based on its detected type."""
# Strip quotes and whitespace that might have been accidentally included
filename = filename.strip().strip("'\"")
file_type = detect_file_type(filename)
if file_type == "csv":
return pd.read_csv(filename, low_memory=False)
elif file_type == "xlsx":
if sheet:
return pd.read_excel(filename, sheet_name=sheet)
else:
return pd.read_excel(filename)
elif file_type == "parquet":
return pd.read_parquet(filename)
def load_in_file(file_path: str, colnames: List[str] = "", excel_sheet: str = ""):
"""
Loads in a tabular data file and returns data and file name.
Parameters:
- file_path (str): The path to the file to be processed.
- colnames (List[str], optional): list of colnames to load in
"""
file_name = get_file_name_no_ext(file_path)
file_data = read_file(file_path, excel_sheet)
if colnames and isinstance(colnames, list):
col_list = colnames
else:
col_list = list(file_data.columns)
if not isinstance(col_list, List):
col_list = [col_list]
col_list = [item for item in col_list if item not in ["", "NA"]]
for col in col_list:
file_data[col] = file_data[col].fillna("")
file_data[col] = (
file_data[col].astype(str).str.replace("\bnan\b", "", regex=True)
)
# print(file_data[colnames])
return file_data, file_name
def load_in_data_file(
file_paths: List[str],
in_colnames: List[str],
batch_size: int = 5,
in_excel_sheets: str = "",
):
"""Load in data table, work out how many batches needed."""
if not isinstance(in_colnames, list):
in_colnames = [in_colnames]
# print("in_colnames:", in_colnames)
try:
file_data, file_name = load_in_file(
file_paths[0], colnames=in_colnames, excel_sheet=in_excel_sheets
)
num_batches = math.ceil(len(file_data) / batch_size)
print(
f"File {file_name} loaded successfully. Number of rows: {len(file_data)}. Total number of batches: {num_batches}"
)
except Exception as e:
print("Could not load data file due to:", e)
file_data = pd.DataFrame()
file_name = ""
num_batches = 1
return file_data, file_name, num_batches
def clean_column_name(
column_name: str, max_length: int = 20, front_characters: bool = True
):
# Convert to string
column_name = str(column_name)
# Replace non-alphanumeric characters (except underscores) with underscores
column_name = re.sub(r"\W+", "_", column_name)
# Remove leading/trailing underscores
column_name = column_name.strip("_")
# Ensure the result is not empty; fall back to "column" if necessary
column_name = column_name if column_name else "column"
# Truncate to max_length
if front_characters is True:
output_text = column_name[:max_length]
else:
output_text = column_name[-max_length:]
return output_text
def load_in_previous_reference_file(file: str):
"""Load in data table from a partially completed consultation summary to continue it."""
reference_file_data = pd.DataFrame()
reference_file_name = ""
out_message = ""
# for file in file_paths:
print("file:", file)
# If reference table
if "reference_table" in file:
try:
reference_file_data, reference_file_name = load_in_file(file)
# print("reference_file_data:", reference_file_data.head(2))
out_message = out_message + " Reference file load successful."
except Exception as e:
out_message = "Could not load reference file data:" + str(e)
raise Exception("Could not load reference file data:", e)
if reference_file_data.empty:
out_message = out_message + " No reference data table provided."
raise Exception(out_message)
print(out_message)
return reference_file_data, reference_file_name
def load_in_previous_data_files(
file_paths_partial_output: List[str], for_modified_table: bool = False
):
"""Load in data table from a partially completed consultation summary to continue it."""
reference_file_data = pd.DataFrame()
reference_file_name = ""
unique_file_data = pd.DataFrame()
unique_file_name = ""
out_message = ""
latest_batch = 0
if not file_paths_partial_output:
out_message = out_message + " No reference or unique data table provided."
return (
reference_file_data,
unique_file_data,
latest_batch,
out_message,
reference_file_name,
unique_file_name,
)
if not isinstance(file_paths_partial_output, list):
file_paths_partial_output = [file_paths_partial_output]
for file in file_paths_partial_output:
if isinstance(file, gr.FileData):
name = file.name
else:
name = file
# If reference table
if "reference_table" in name:
try:
reference_file_data, reference_file_name = load_in_file(file)
# print("reference_file_data:", reference_file_data.head(2))
out_message = out_message + " Reference file load successful."
except Exception as e:
out_message = "Could not load reference file data:" + str(e)
raise Exception("Could not load reference file data:", e)
# If unique table
if "unique_topic" in name:
try:
unique_file_data, unique_file_name = load_in_file(file)
# print("unique_topics_file:", unique_file_data.head(2))
out_message = out_message + " Unique table file load successful."
except Exception as e:
out_message = "Could not load unique table file data:" + str(e)
raise Exception("Could not load unique table file data:", e)
if "batch_" in name:
latest_batch = re.search(r"batch_(\d+)", file.name).group(1)
print("latest batch:", latest_batch)
latest_batch = int(latest_batch)
if latest_batch == 0:
out_message = out_message + " Latest batch number not found."
if reference_file_data.empty:
out_message = out_message + " No reference data table provided."
# raise Exception(out_message)
if unique_file_data.empty:
out_message = out_message + " No unique data table provided."
print(out_message)
# Return all data if using for deduplication task. Return just modified unique table if using just for table modification
if for_modified_table is False:
return (
reference_file_data,
unique_file_data,
latest_batch,
out_message,
reference_file_name,
unique_file_name,
)
else:
reference_file_data.drop("Topic number", axis=1, inplace=True, errors="ignore")
unique_file_data = create_topic_summary_df_from_reference_table(
reference_file_data
)
unique_file_data.drop("Summary", axis=1, inplace=True)
# Then merge the topic numbers back to the original dataframe
reference_file_data = reference_file_data.merge(
unique_file_data[
["General topic", "Subtopic", "Sentiment", "Topic number"]
],
on=["General topic", "Subtopic", "Sentiment"],
how="left",
)
out_file_names = [reference_file_name + ".csv"]
out_file_names.append(unique_file_name + ".csv")
return (
unique_file_data,
reference_file_data,
unique_file_data,
reference_file_name,
unique_file_name,
out_file_names,
) # gr.Dataframe(value=unique_file_data, headers=None, column_count=(unique_file_data.shape[1], "fixed"), row_count = (unique_file_data.shape[0], "fixed"), visible=True, type="pandas")
def join_cols_onto_reference_df(
reference_df: pd.DataFrame,
original_data_df: pd.DataFrame,
join_columns: List[str],
original_file_name: str,
output_folder: str = OUTPUT_FOLDER,
):
# print("original_data_df columns:", original_data_df.columns)
# print("original_data_df:", original_data_df)
original_data_df.reset_index(names="Response References", inplace=True)
original_data_df["Response References"] += 1
# print("reference_df columns:", reference_df.columns)
# print("reference_df:", reference_df)
join_columns.append("Response References")
reference_df["Response References"] = (
reference_df["Response References"].fillna("-1").astype(int)
)
save_file_name = output_folder + original_file_name + "_j.csv"
out_reference_df = reference_df.merge(
original_data_df[join_columns], on="Response References", how="left"
)
out_reference_df.to_csv(save_file_name, index=None)
file_data_outputs = [save_file_name]
return out_reference_df, file_data_outputs
def get_basic_response_data(
file_data: pd.DataFrame, chosen_cols: List[str], verify_titles: bool = False
) -> pd.DataFrame:
if not isinstance(chosen_cols, list):
chosen_cols = [chosen_cols]
if chosen_cols[0] not in file_data.columns:
error_msg = (
f"Column '{chosen_cols[0]}' not found in file_data columns. "
f"Available columns: {list(file_data.columns)}"
)
print(error_msg)
raise KeyError(error_msg)
# If verify_titles is True, we need to check and include the second column
if verify_titles is True:
if len(chosen_cols) < 2:
error_msg = (
"verify_titles is True but only one column provided. "
"Need at least 2 columns: one for response text and one for title."
)
print(error_msg)
raise ValueError(error_msg)
if chosen_cols[1] not in file_data.columns:
error_msg = (
f"Column '{chosen_cols[1]}' not found in file_data columns for title. "
f"Available columns: {list(file_data.columns)}"
)
print(error_msg)
raise KeyError(error_msg)
# Include both columns when verify_titles is True
basic_response_data = file_data[[chosen_cols[0], chosen_cols[1]]]
basic_response_data = basic_response_data.rename(
columns={
basic_response_data.columns[0]: "Response",
basic_response_data.columns[1]: "Title",
}
)
else:
basic_response_data = file_data[[chosen_cols[0]]]
basic_response_data = basic_response_data.rename(
columns={basic_response_data.columns[0]: "Response"}
)
basic_response_data = basic_response_data.reset_index(
names="Original Reference"
) # .reset_index(drop=True) #
# Try to convert to int, if it fails, return a range of 1 to last row + 1
try:
basic_response_data["Original Reference"] = (
basic_response_data["Original Reference"].astype(int) + 1
)
except (ValueError, TypeError):
basic_response_data["Original Reference"] = range(
1, len(basic_response_data) + 1
)
basic_response_data["Reference"] = basic_response_data.index.astype(int) + 1
if verify_titles is True:
basic_response_data["Title"] = basic_response_data["Title"].str.strip()
basic_response_data["Title"] = basic_response_data["Title"].apply(initial_clean)
else:
basic_response_data = basic_response_data[
["Reference", "Response", "Original Reference"]
]
basic_response_data["Response"] = basic_response_data["Response"].str.strip()
basic_response_data["Response"] = basic_response_data["Response"].apply(
initial_clean
)
return basic_response_data
def convert_reference_table_to_pivot_table(
df: pd.DataFrame, basic_response_data: pd.DataFrame = pd.DataFrame()
):
df_in = df[["Response References", "General topic", "Subtopic", "Sentiment"]].copy()
df_in["Response References"] = df_in["Response References"].astype(int)
# Create a combined category column
df_in["Category"] = (
df_in["General topic"] + " - " + df_in["Subtopic"] + " - " + df_in["Sentiment"]
)
# Create pivot table counting occurrences of each unique combination
pivot_table = pd.crosstab(
index=df_in["Response References"],
columns=[df_in["General topic"], df_in["Subtopic"], df_in["Sentiment"]],
margins=True,
)
# Flatten column names to make them more readable
pivot_table.columns = [" - ".join(col) for col in pivot_table.columns]
pivot_table.reset_index(inplace=True)
if not basic_response_data.empty:
pivot_table = basic_response_data.merge(
pivot_table, right_on="Response References", left_on="Reference", how="left"
)
pivot_table.drop("Response References", axis=1, inplace=True)
pivot_table.columns = pivot_table.columns.str.replace(
"Not assessed - ", ""
).str.replace("- Not assessed", "")
return pivot_table
def create_topic_summary_df_from_reference_table(reference_df: pd.DataFrame):
if "Group" not in reference_df.columns:
reference_df["Group"] = "All"
# Ensure 'Start row of group' column is numeric to avoid comparison errors
if "Start row of group" in reference_df.columns:
reference_df["Start row of group"] = pd.to_numeric(
reference_df["Start row of group"], errors="coerce"
)
out_topic_summary_df = (
reference_df.groupby(["General topic", "Subtopic", "Sentiment", "Group"])
.agg(
{
"Response References": "size", # Count the number of references
"Summary": lambda x: "<br>".join(
sorted(
set(x),
key=lambda summary: reference_df.loc[
reference_df["Summary"] == summary, "Start row of group"
].min(),
)
),
}
)
.reset_index()
# .sort_values('Response References', ascending=False) # Sort by size, biggest first
)
out_topic_summary_df = out_topic_summary_df.rename(
columns={"Response References": "Number of responses"}, errors="ignore"
)
# Sort the dataframe first
out_topic_summary_df = out_topic_summary_df.sort_values(
["Group", "Number of responses", "General topic", "Subtopic", "Sentiment"],
ascending=[True, False, True, True, True],
)
# Then assign Topic number based on the final sorted order
out_topic_summary_df = out_topic_summary_df.assign(
Topic_number=lambda df: np.arange(1, len(df) + 1)
)
out_topic_summary_df.rename(columns={"Topic_number": "Topic number"}, inplace=True)
return out_topic_summary_df
# Wrap text in each column to the specified max width, including whole words
def wrap_text(text: str, max_width=80, max_text_length=None):
if not isinstance(text, str):
return text
# If max_text_length is set, truncate the text and add ellipsis
if max_text_length and len(text) > max_text_length:
text = text[:max_text_length] + "..."
text = text.replace("\r\n", "<br>").replace("\n", "<br>")
words = text.split()
if not words:
return text
# First pass: initial word wrapping
wrapped_lines = list()
current_line = list()
current_length = 0
def add_line():
if current_line:
wrapped_lines.append(" ".join(current_line))
current_line.clear()
for i, word in enumerate(words):
word_length = len(word)
# Handle words longer than max_width
if word_length > max_width:
add_line()
wrapped_lines.append(word)
current_length = 0
continue
# Calculate space needed for this word
space_needed = word_length if not current_line else word_length + 1
# Check if adding this word would exceed max_width
if current_length + space_needed > max_width:
add_line()
current_line.append(word)
current_length = word_length
else:
current_line.append(word)
current_length += space_needed
add_line() # Add any remaining text
# Second pass: redistribute words from lines following single-word lines
def can_fit_in_previous_line(prev_line, word):
return len(prev_line) + 1 + len(word) <= max_width
i = 0
while i < len(wrapped_lines) - 1:
words_in_line = wrapped_lines[i].split()
next_line_words = wrapped_lines[i + 1].split()
# If current line has only one word and isn't too long
if len(words_in_line) == 1 and len(words_in_line[0]) < max_width * 0.8:
# Try to bring words back from the next line
words_to_bring_back = list()
remaining_words = list()
current_length = len(words_in_line[0])
for word in next_line_words:
if current_length + len(word) + 1 <= max_width:
words_to_bring_back.append(word)
current_length += len(word) + 1
else:
remaining_words.append(word)
if words_to_bring_back:
# Update current line with additional words
wrapped_lines[i] = " ".join(words_in_line + words_to_bring_back)
# Update next line with remaining words
if remaining_words:
wrapped_lines[i + 1] = " ".join(remaining_words)
else:
wrapped_lines.pop(i + 1)
continue # Don't increment i if we removed a line
i += 1
return "<br>".join(wrapped_lines)
def initial_clean(text: str):
#### Some of my cleaning functions
html_pattern_regex = r"<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| "
html_start_pattern_end_dots_regex = r"<(.*?)\.\."
non_ascii_pattern = r"[^\x00-\x7F]+"
multiple_spaces_regex = r"\s{2,}"
# Define a list of patterns and their replacements
patterns = [
(html_pattern_regex, " "),
(html_start_pattern_end_dots_regex, " "),
(non_ascii_pattern, " "),
(multiple_spaces_regex, " "),
]
# Apply each regex replacement
for pattern, replacement in patterns:
text = re.sub(pattern, replacement, text)
return text
def view_table(file_path: str): # Added max_width parameter
df = pd.read_csv(file_path)
df_cleaned = df.replace("\n", " ", regex=True)
# Use apply with axis=1 to apply wrap_text to each element
df_cleaned = df_cleaned.apply(lambda col: col.map(wrap_text))
table_out = df_cleaned.to_markdown(index=False)
return table_out
def ensure_output_folder_exists():
"""Checks if the 'output/' folder exists, creates it if not."""
folder_name = "output/"
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print("Created the 'output/' folder.")
else:
print("The 'output/' folder already exists.")
def put_columns_in_df(in_file: List[str]):
new_choices = list()
concat_choices = list()
all_sheet_names = list()
number_of_excel_files = 0
if not in_file:
return (
gr.Dropdown(choices=list()),
gr.Dropdown(choices=list()),
"",
gr.Dropdown(choices=list()),
gr.Dropdown(choices=list()),
)
for file in in_file:
file_name = file.name
file_type = detect_file_type(file_name)
# print("File type is:", file_type)
file_end = get_file_path_with_extension(file_name)
if file_type == "xlsx":
number_of_excel_files += 1
new_choices = list()
print("Running through all xlsx sheets")
anon_xlsx = pd.ExcelFile(file_name)
new_sheet_names = anon_xlsx.sheet_names
# Iterate through the sheet names
for sheet_name in new_sheet_names:
# Read each sheet into a DataFrame
df = pd.read_excel(file_name, sheet_name=sheet_name)
new_choices.extend(list(df.columns))
all_sheet_names.extend(new_sheet_names)
else:
df = read_file(file_name)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
# Drop duplicate columns
concat_choices = sorted(set(concat_choices))
if number_of_excel_files > 0:
return (
gr.Dropdown(choices=concat_choices, value=concat_choices[0]),
gr.Dropdown(
choices=all_sheet_names,
value=all_sheet_names[0],
visible=True,
interactive=True,
),
file_end,
gr.Dropdown(choices=concat_choices),
gr.Dropdown(choices=concat_choices),
)
else:
return (
gr.Dropdown(choices=concat_choices, value=concat_choices[0]),
gr.Dropdown(visible=False),
file_end,
gr.Dropdown(choices=concat_choices),
gr.Dropdown(choices=concat_choices),
)
# Following function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run)
def add_folder_to_path(folder_path: str):
"""
Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist.
"""
if os.path.exists(folder_path) and os.path.isdir(folder_path):
print(folder_path, "folder exists.")
# Resolve relative path to absolute path
absolute_path = os.path.abspath(folder_path)
current_path = os.environ["PATH"]
if absolute_path not in current_path.split(os.pathsep):
full_path_extension = absolute_path + os.pathsep + current_path
os.environ["PATH"] = full_path_extension
# print(f"Updated PATH with: ", full_path_extension)
else:
print(f"Directory {folder_path} already exists in PATH.")
else:
print(f"Folder not found at {folder_path} - not added to PATH")
# Upon running a process, the feedback buttons are revealed
def reveal_feedback_buttons():
return (
gr.Radio(visible=True),
gr.Textbox(visible=True),
gr.Button(visible=True),
gr.Markdown(visible=True),
)
def wipe_logs(feedback_logs_loc: str, usage_logs_loc: str):
try:
os.remove(feedback_logs_loc)
except Exception as e:
print("Could not remove feedback logs file", e)
try:
os.remove(usage_logs_loc)
except Exception as e:
print("Could not remove usage logs file", e)
async def get_connection_params(
request: gr.Request,
output_folder_textbox: str = OUTPUT_FOLDER,
input_folder_textbox: str = INPUT_FOLDER,
session_output_folder: str = SESSION_OUTPUT_FOLDER,
):
# print("Session hash:", request.session_hash)
if CUSTOM_HEADER and CUSTOM_HEADER_VALUE:
if CUSTOM_HEADER in request.headers:
supplied_custom_header_value = request.headers[CUSTOM_HEADER]
if supplied_custom_header_value == CUSTOM_HEADER_VALUE:
print("Custom header supplied and matches CUSTOM_HEADER_VALUE")
else:
print("Custom header value does not match expected value.")
raise ValueError("Custom header value does not match expected value.")
else:
print("Custom header value not found.")
raise ValueError("Custom header value not found.")
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash.
if request.username:
out_session_hash = request.username
# print("Request username found:", out_session_hash)
elif "x-cognito-id" in request.headers:
out_session_hash = request.headers["x-cognito-id"]
# print("Cognito ID found:", out_session_hash)
elif "x-amzn-oidc-identity" in request.headers:
out_session_hash = request.headers["x-amzn-oidc-identity"]
# Fetch email address using Cognito client
cognito_client = boto3.client("cognito-idp")
try:
response = cognito_client.admin_get_user(
UserPoolId=AWS_USER_POOL_ID, # Replace with your User Pool ID
Username=out_session_hash,
)
email = next(
attr["Value"]
for attr in response["UserAttributes"]
if attr["Name"] == "email"
)
# print("Email address found:", email)
out_session_hash = email
except ClientError as e:
print("Error fetching user details:", e)
email = None
print("Cognito ID found:", out_session_hash)
else:
out_session_hash = request.session_hash
if session_output_folder == "True" or session_output_folder is True:
output_folder = output_folder_textbox + out_session_hash + "/"
input_folder = input_folder_textbox + out_session_hash + "/"
else:
output_folder = output_folder_textbox
input_folder = input_folder_textbox
if not os.path.exists(output_folder):
os.mkdir(output_folder)
if not os.path.exists(input_folder):
os.mkdir(input_folder)
return out_session_hash, output_folder, out_session_hash, input_folder
def load_in_default_cost_codes(cost_codes_path: str, default_cost_code: str = ""):
"""
Load in the cost codes list from file.
"""
cost_codes_df = pd.read_csv(cost_codes_path)
dropdown_choices = cost_codes_df.iloc[:, 0].astype(str).tolist()
# Avoid inserting duplicate or empty cost code values
if default_cost_code and default_cost_code not in dropdown_choices:
dropdown_choices.insert(0, default_cost_code)
# Always have a blank option at the top
if "" not in dropdown_choices:
dropdown_choices.insert(0, "")
out_dropdown = gr.Dropdown(
value=default_cost_code if default_cost_code in dropdown_choices else "",
label="Choose cost code for analysis",
choices=dropdown_choices,
allow_custom_value=False,
)
return cost_codes_df, cost_codes_df, out_dropdown
def df_select_callback_cost(df: pd.DataFrame, evt: gr.SelectData):
row_value_code = evt.row_value[0] # This is the value for cost code
return row_value_code
def update_cost_code_dataframe_from_dropdown_select(
cost_dropdown_selection: str, cost_code_df: pd.DataFrame
):
cost_code_df = cost_code_df.loc[
cost_code_df.iloc[:, 0] == cost_dropdown_selection, :
]
return cost_code_df
def reset_base_dataframe(df: pd.DataFrame):
return df
def enforce_cost_codes(
enforce_cost_code_textbox: str,
cost_code_choice: str,
cost_code_df: pd.DataFrame,
verify_cost_codes: bool = True,
):
"""
Check if the enforce cost codes variable is set to true, and then check that a cost cost has been chosen. If not, raise an error. Then, check against the values in the cost code dataframe to ensure that the cost code exists.
"""
if enforce_cost_code_textbox == "True":
if not cost_code_choice:
raise Exception("Please choose a cost code before continuing")
if verify_cost_codes is True:
if cost_code_df.empty:
# Warn but don't block - cost code is still required above
print(
"Warning: Cost code dataframe is empty. Verification skipped. Please ensure cost codes are loaded for full validation."
)
else:
valid_cost_codes_list = list(cost_code_df.iloc[:, 0].unique())
if cost_code_choice not in valid_cost_codes_list:
raise Exception(
"Selected cost code not found in list. Please contact Finance if you cannot find the correct cost code from the given list of suggestions."
)
return
def _get_env_list(env_var_name: str, strip_strings: bool = True) -> List[str]:
"""Parses a comma-separated environment variable into a list of strings."""
value = env_var_name[1:-1].strip().replace('"', "").replace("'", "")
if not value:
return []
# Split by comma and filter out any empty strings that might result from extra commas
if strip_strings:
return [s.strip() for s in value.split(",") if s.strip()]
else:
return [codecs.decode(s, "unicode_escape") for s in value.split(",") if s]
def create_batch_file_path_details(
reference_data_file_name: str,
latest_batch_completed: int = None,
batch_size_number: int = None,
in_column: str = None,
) -> str:
"""
Creates a standardised batch file path detail string from a reference data filename.
Args:
reference_data_file_name (str): Name of the reference data file
latest_batch_completed (int, optional): Latest batch completed. Defaults to None.
batch_size_number (int, optional): Batch size number. Defaults to None.
in_column (str, optional): In column. Defaults to None.
Returns:
str: Formatted batch file path detail string
"""
# Extract components from filename using regex
file_name = (
re.search(
r"(.*?)(?:_all_|_final_|_batch_|_col_)", reference_data_file_name
).group(1)
if re.search(r"(.*?)(?:_all_|_final_|_batch_|_col_)", reference_data_file_name)
else reference_data_file_name
)
latest_batch_completed = (
int(re.search(r"batch_(\d+)_", reference_data_file_name).group(1))
if "batch_" in reference_data_file_name
else latest_batch_completed
)
batch_size_number = (
int(re.search(r"size_(\d+)_", reference_data_file_name).group(1))
if "size_" in reference_data_file_name
else batch_size_number
)
in_column = (
re.search(r"col_(.*?)_reference", reference_data_file_name).group(1)
if "col_" in reference_data_file_name
else in_column
)
# Clean the extracted names
file_name_cleaned = clean_column_name(file_name, max_length=20)
in_column_cleaned = clean_column_name(in_column, max_length=20)
# Create batch file path details string
if latest_batch_completed:
return f"{file_name_cleaned}_batch_{latest_batch_completed}_size_{batch_size_number}_col_{in_column_cleaned}"
return f"{file_name_cleaned}_col_{in_column_cleaned}"
def move_overall_summary_output_files_to_front_page(
overall_summary_output_files_xlsx: List[str],
):
return overall_summary_output_files_xlsx
def generate_zero_shot_topics_df(
zero_shot_topics: pd.DataFrame,
force_zero_shot_radio: str = "No",
create_revised_general_topics: bool = False,
max_topic_no: int = MAXIMUM_ZERO_SHOT_TOPICS,
):
"""
Preprocesses a DataFrame of zero-shot topics, cleaning and formatting them
for use with a large language model. It handles different column configurations
(e.g., only subtopics, general topics and subtopics, or subtopics with descriptions)
and enforces a maximum number of topics.
Args:
zero_shot_topics (pd.DataFrame): A DataFrame containing the initial zero-shot topics.
Expected columns can vary, but typically include
"General topic", "Subtopic", and/or "Description".
force_zero_shot_radio (str, optional): A string indicating whether to force
the use of zero-shot topics. Defaults to "No".
(Currently not used in the function logic, but kept for signature consistency).
create_revised_general_topics (bool, optional): A boolean indicating whether to
create revised general topics. Defaults to False.
(Currently not used in the function logic, but kept for signature consistency).
max_topic_no (int, optional): The maximum number of topics allowed to fit within
LLM context limits. If `zero_shot_topics` exceeds this,
it will be truncated. Defaults to 120.
Returns:
tuple: A tuple containing:
- zero_shot_topics_gen_topics_list (list): A list of cleaned general topics.
- zero_shot_topics_subtopics_list (list): A list of cleaned subtopics.
- zero_shot_topics_description_list (list): A list of cleaned topic descriptions.
"""
def _has_column_starting_with(columns, prefix):
"""Check if any column starts with the given prefix."""
return any(str(col).lower().startswith(prefix.lower()) for col in columns)
def _get_column_starting_with(columns, prefix):
"""Get the first column that starts with the given prefix, or None if not found."""
for col in columns:
if str(col).lower().startswith(prefix.lower()):
return col
return None
def _has_all_columns_starting_with(columns, prefixes):
"""Check if there are columns starting with all given prefixes."""
return all(_has_column_starting_with(columns, prefix) for prefix in prefixes)
zero_shot_topics_gen_topics_list = list()
zero_shot_topics_subtopics_list = list()
zero_shot_topics_description_list = list()
# Max 120 topics allowed
if zero_shot_topics.shape[0] > max_topic_no:
out_message = (
"Maximum "
+ str(max_topic_no)
+ " zero-shot topics allowed according to application configuration."
)
print(out_message)
raise Exception(out_message)
# Forward slashes in the topic names seems to confuse the model
if zero_shot_topics.shape[1] >= 1: # Check if there is at least one column
for x in zero_shot_topics.columns:
if not zero_shot_topics[x].isnull().all():
zero_shot_topics[x] = zero_shot_topics[x].apply(initial_clean)
zero_shot_topics.loc[:, x] = (
zero_shot_topics.loc[:, x]
.str.strip()
.str.replace("\n", " ")
.str.replace("\r", " ")
.str.replace("/", " or ")
.str.replace("&", " and ")
.str.replace(" s ", "s ")
.str.lower()
.str.capitalize()
)
zero_shot_topics.columns = zero_shot_topics.columns.str.lower()
# If number of columns is 1, keep only subtopics
if zero_shot_topics.shape[1] == 1 and not _has_column_starting_with(
zero_shot_topics.columns, "general topic"
):
print("Found only Subtopic in zero shot topics")
zero_shot_topics_gen_topics_list = [""] * zero_shot_topics.shape[0]
zero_shot_topics_subtopics_list = list(zero_shot_topics.iloc[:, 0])
# Allow for possibility that the user only wants to set general topics and not subtopics
elif zero_shot_topics.shape[1] == 1 and _has_column_starting_with(
zero_shot_topics.columns, "general topic"
):
print("Found only General topic in zero shot topics")
gen_topic_col = _get_column_starting_with(
zero_shot_topics.columns, "general topic"
)
zero_shot_topics_gen_topics_list = list(zero_shot_topics[gen_topic_col])
zero_shot_topics_subtopics_list = [""] * zero_shot_topics.shape[0]
# If general topic, subtopic and description are specified
elif _has_all_columns_starting_with(
zero_shot_topics.columns, ["general topic", "subtopic", "description"]
):
print("Found General topic, Subtopic and Description in zero shot topics")
gen_topic_col = _get_column_starting_with(
zero_shot_topics.columns, "general topic"
)
subtopic_col = _get_column_starting_with(
zero_shot_topics.columns, "subtopic"
)
desc_col = _get_column_starting_with(
zero_shot_topics.columns, "description"
)
zero_shot_topics_gen_topics_list = list(zero_shot_topics[gen_topic_col])
zero_shot_topics_subtopics_list = list(zero_shot_topics[subtopic_col])
zero_shot_topics_description_list = list(zero_shot_topics[desc_col])
# If general topic and subtopic are specified
elif _has_all_columns_starting_with(
zero_shot_topics.columns, ["general topic", "subtopic"]
) and not _has_column_starting_with(zero_shot_topics.columns, "description"):
print("Found General topic and Subtopic in zero shot topics")
gen_topic_col = _get_column_starting_with(
zero_shot_topics.columns, "general topic"
)
subtopic_col = _get_column_starting_with(
zero_shot_topics.columns, "subtopic"
)
zero_shot_topics_gen_topics_list = list(zero_shot_topics[gen_topic_col])
zero_shot_topics_subtopics_list = list(zero_shot_topics[subtopic_col])
# If subtopic and description are specified
elif _has_all_columns_starting_with(
zero_shot_topics.columns, ["subtopic", "description"]
) and not _has_column_starting_with(zero_shot_topics.columns, "general topic"):
print("Found Subtopic and Description in zero shot topics")
zero_shot_topics_gen_topics_list = [""] * zero_shot_topics.shape[0]
subtopic_col = _get_column_starting_with(
zero_shot_topics.columns, "subtopic"
)
desc_col = _get_column_starting_with(
zero_shot_topics.columns, "description"
)
zero_shot_topics_subtopics_list = list(zero_shot_topics[subtopic_col])
zero_shot_topics_description_list = list(zero_shot_topics[desc_col])
elif _has_all_columns_starting_with(
zero_shot_topics.columns, ["general topic", "description"]
) and not _has_column_starting_with(zero_shot_topics.columns, "subtopic"):
print("Found General topic and Description in zero shot topics")
gen_topic_col = _get_column_starting_with(
zero_shot_topics.columns, "general topic"
)
desc_col = _get_column_starting_with(
zero_shot_topics.columns, "description"
)
zero_shot_topics_gen_topics_list = list(zero_shot_topics[gen_topic_col])
zero_shot_topics_subtopics_list = [""] * zero_shot_topics.shape[0]
zero_shot_topics_description_list = list(zero_shot_topics[desc_col])
# If number of columns is at least 2, keep general topics and subtopics
# (only if named columns don't exist)
elif (
zero_shot_topics.shape[1] == 2
and not _has_column_starting_with(zero_shot_topics.columns, "description")
and not _has_column_starting_with(zero_shot_topics.columns, "general topic")
and not _has_column_starting_with(zero_shot_topics.columns, "subtopic")
):
zero_shot_topics_gen_topics_list = list(zero_shot_topics.iloc[:, 0])
zero_shot_topics_subtopics_list = list(zero_shot_topics.iloc[:, 1])
# If number of columns is at least 3, assume general topics, subtopics and descriptions were intended for the first three columns
elif (
zero_shot_topics.shape[1] >= 3
and not _has_column_starting_with(zero_shot_topics.columns, "general topic")
and not _has_column_starting_with(zero_shot_topics.columns, "subtopic")
and not _has_column_starting_with(zero_shot_topics.columns, "description")
):
zero_shot_topics_gen_topics_list = list(zero_shot_topics.iloc[:, 0])
zero_shot_topics_subtopics_list = list(zero_shot_topics.iloc[:, 1])
zero_shot_topics_description_list = list(zero_shot_topics.iloc[:, 2])
else:
# If there are more columns, just assume that the first column was meant to be a subtopic
zero_shot_topics_gen_topics_list = [""] * zero_shot_topics.shape[0]
zero_shot_topics_subtopics_list = list(zero_shot_topics.iloc[:, 0])
zero_shot_topics_description_list = [""] * zero_shot_topics.shape[0]
# Add a description if column is present and not already added above
if not zero_shot_topics_description_list:
zero_shot_topics_description_list = [""] * zero_shot_topics.shape[0]
# If the responses are being forced into zero shot topics, allow an option for nothing relevant
if force_zero_shot_radio == "Yes":
zero_shot_topics_gen_topics_list.append("")
zero_shot_topics_subtopics_list.append("No relevant topic")
zero_shot_topics_description_list.append("")
# Add description or not
zero_shot_topics_df = pd.DataFrame(
data={
"General topic": zero_shot_topics_gen_topics_list,
"Subtopic": zero_shot_topics_subtopics_list,
"Description": zero_shot_topics_description_list,
}
)
# Filter out duplicate General topic and subtopic names
zero_shot_topics_df = zero_shot_topics_df.drop_duplicates(
["General topic", "Subtopic"], keep="first"
)
# Sort the dataframe by General topic and subtopic
zero_shot_topics_df = zero_shot_topics_df.sort_values(
["General topic", "Subtopic"], ascending=[True, True]
)
return zero_shot_topics_df
def update_model_choice(model_source):
# Filter models by source and return the first matching model name
matching_models = [
model_name
for model_name, model_info in model_name_map.items()
if model_info["source"] == model_source
]
output_model = matching_models[0] if matching_models else model_full_names[0]
return gr.Dropdown(
value=output_model,
choices=matching_models,
label="Large language model for topic extraction and summarisation",
multiselect=False,
)
def ensure_model_in_map(model_choice: str, model_name_map_dict: dict = None) -> dict:
"""
Ensures that a model_choice is registered in model_name_map.
If the model_choice is not found, it assumes it's an inference-server model
and adds it to the map with source "inference-server".
Args:
model_choice (str): The model name to check/register
model_name_map_dict (dict, optional): The model_name_map dictionary to update.
If None, uses the global model_name_map from config.
Returns:
dict: The model_name_map dictionary (updated if needed)
"""
# Use provided dict or global one
if model_name_map_dict is None:
from tools.config import model_name_map
model_name_map_dict = model_name_map
# If model_choice is not in the map, assume it's an inference-server model
if model_choice not in model_name_map_dict:
model_name_map_dict[model_choice] = {
"short_name": model_choice,
"source": "inference-server",
}
print(f"Registered custom model '{model_choice}' as inference-server model")
return model_name_map_dict
|