AI_Text_Authenticator / processors /language_detector.py
satyaki-mitra's picture
wip
d92e2aa
raw
history blame
23.9 kB
# DEPENDENCIES
import re
import string
from enum import Enum
from typing import Dict
from typing import List
from typing import Tuple
from loguru import logger
from typing import Optional
from dataclasses import dataclass
# Try to import optional libraries
try:
import langdetect
from langdetect import detect, detect_langs, DetectorFactory
# Seed for reproducibility
DetectorFactory.seed = 0
LANGDETECT_AVAILABLE = True
except ImportError:
logger.warning("langdetect not available. Install: pip install langdetect")
LANGDETECT_AVAILABLE = False
try:
from models.model_manager import get_model_manager
MODEL_MANAGER_AVAILABLE = True
except ImportError:
logger.warning("model_manager not available, using fallback methods")
MODEL_MANAGER_AVAILABLE = False
class Language(Enum):
"""
ISO 639-1 language codes for supported languages
"""
ENGLISH = "en"
SPANISH = "es"
FRENCH = "fr"
GERMAN = "de"
ITALIAN = "it"
PORTUGUESE = "pt"
RUSSIAN = "ru"
CHINESE = "zh"
JAPANESE = "ja"
KOREAN = "ko"
ARABIC = "ar"
HINDI = "hi"
DUTCH = "nl"
POLISH = "pl"
TURKISH = "tr"
SWEDISH = "sv"
VIETNAMESE = "vi"
INDONESIAN = "id"
THAI = "th"
GREEK = "el"
HEBREW = "he"
CZECH = "cs"
ROMANIAN = "ro"
DANISH = "da"
FINNISH = "fi"
NORWEGIAN = "no"
UNKNOWN = "unknown"
class Script(Enum):
"""
Writing scripts
"""
LATIN = "latin"
CYRILLIC = "cyrillic"
ARABIC = "arabic"
CHINESE = "chinese"
JAPANESE = "japanese"
KOREAN = "korean"
DEVANAGARI = "devanagari"
GREEK = "greek"
HEBREW = "hebrew"
THAI = "thai"
MIXED = "mixed"
UNKNOWN = "unknown"
@dataclass
class LanguageDetectionResult:
"""
Result of language detection
"""
primary_language : Language
confidence : float
all_languages : Dict[str, float] # language_code -> confidence
script : Script
is_multilingual : bool
detection_method : str
char_count : int
word_count : int
warnings : List[str]
def to_dict(self) -> Dict:
"""
Convert to dictionary
"""
return {"primary_language" : self.primary_language.value,
"confidence" : round(self.confidence, 4),
"all_languages" : {k: round(v, 4) for k, v in self.all_languages.items()},
"script" : self.script.value,
"is_multilingual" : self.is_multilingual,
"detection_method" : self.detection_method,
"char_count" : self.char_count,
"word_count" : self.word_count,
"warnings" : self.warnings,
}
class LanguageDetector:
"""
Detects the language of input text using multiple strategies with fallbacks.
Features:
- Primary : XLM-RoBERTa model (supports 100+ languages)
- Fallback 1 : langdetect library (fast, probabilistic)
- Fallback 2 : Character-based heuristics
- Confidence scoring
- Multi-language detection
- Script detection (Latin, Cyrillic, Arabic, etc.)
Supported Languages:
- 100+ languages via XLM-RoBERTa
- High accuracy for major languages (English, Spanish, French, German, Chinese, etc.)
"""
# Minimum text length for reliable detection
MIN_TEXT_LENGTH = 20
# Language name mappings
LANGUAGE_NAMES = {"en": "English",
"es": "Spanish",
"fr": "French",
"de": "German",
"it": "Italian",
"pt": "Portuguese",
"ru": "Russian",
"zh": "Chinese",
"ja": "Japanese",
"ko": "Korean",
"ar": "Arabic",
"hi": "Hindi",
}
# Character ranges for script detection
SCRIPT_RANGES = {Script.LATIN: [(0x0041, 0x007A), (0x00C0, 0x024F)],
Script.CYRILLIC: [(0x0400, 0x04FF)],
Script.ARABIC: [(0x0600, 0x06FF), (0x0750, 0x077F)],
Script.CHINESE: [(0x4E00, 0x9FFF), (0x3400, 0x4DBF)],
Script.JAPANESE: [(0x3040, 0x309F), (0x30A0, 0x30FF)],
Script.KOREAN: [(0xAC00, 0xD7AF), (0x1100, 0x11FF)],
Script.DEVANAGARI: [(0x0900, 0x097F)],
Script.GREEK: [(0x0370, 0x03FF)],
Script.HEBREW: [(0x0590, 0x05FF)],
Script.THAI: [(0x0E00, 0x0E7F)],
}
def __init__(self, use_model: bool = True, min_confidence: float = 0.5):
"""
Initialize language detector
Arguments:
----------
use_model : Use ML model for detection (more accurate)
min_confidence : Minimum confidence threshold
"""
self.use_model = use_model and MODEL_MANAGER_AVAILABLE
self.min_confidence = min_confidence
self.model_manager = None
self.classifier = None
self.is_initialized = False
logger.info(f"LanguageDetector initialized (use_model={self.use_model})")
def initialize(self) -> bool:
"""
Initialize the ML model (if using)
Returns:
--------
{ bool } : True if successful, False otherwise
"""
if not self.use_model:
self.is_initialized = True
return True
try:
logger.info("Initializing language detection model...")
self.model_manager = get_model_manager()
self.classifier = self.model_manager.load_pipeline(model_name = "language_detector",
task = "text-classification",
)
self.is_initialized = True
logger.success("Language detector initialized successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize language detector: {repr(e)}")
logger.warning("Falling back to langdetect library")
self.use_model = False
self.is_initialized = True
return False
def detect(self, text: str, **kwargs) -> LanguageDetectionResult:
"""
Detect language of input text
Arguments:
----------
text { str } : Input text to analyze
**kwargs : Additional options
Returns:
--------
LanguageDetectionResult object
"""
warnings = list()
# Validate input
if not text or not isinstance(text, str):
return self._create_unknown_result(text = "",
warnings = ["Empty or invalid text"],
)
# Clean text for analysis
cleaned_text = self._clean_text(text)
char_count = len(cleaned_text)
word_count = len(cleaned_text.split())
# Check minimum length
if (char_count < self.MIN_TEXT_LENGTH):
warnings.append(f"Text too short ({char_count} chars, minimum {self.MIN_TEXT_LENGTH}). Detection may be unreliable.")
# Detect script first
script = self._detect_script(cleaned_text)
# Try detection methods in order
result = None
# Method 1 : ML Model
if self.use_model and self.is_initialized:
try:
result = self._detect_with_model(cleaned_text)
result.detection_method = "xlm-roberta-model"
except Exception as e:
logger.warning(f"Model detection failed: {repr(e)}, trying fallback")
warnings.append("Model detection failed, using fallback")
# Method 2 : langdetect library
if result is None and LANGDETECT_AVAILABLE:
try:
result = self._detect_with_langdetect(cleaned_text)
result.detection_method = "langdetect-library"
except Exception as e:
logger.warning(f"langdetect failed: {repr(e)}, trying heuristics")
warnings.append("langdetect failed, using heuristics")
# Method 3 : Character-based heuristics
if result is None:
result = self._detect_with_heuristics(cleaned_text, script)
result.detection_method = "character-heuristics"
# Add metadata
result.script = script
result.char_count = char_count
result.word_count = word_count
result.warnings.extend(warnings)
# Check for multilingual content
if len([v for v in result.all_languages.values() if v > 0.2]) > 1:
result.is_multilingual = True
warnings.append("Text appears to contain multiple languages")
logger.info(f"Detected language: {result.primary_language.value} (confidence: {result.confidence:.2f}, method: {result.detection_method})")
return result
def _detect_with_model(self, text: str) -> LanguageDetectionResult:
"""
Detect language using XLM-RoBERTa model
"""
if not self.is_initialized:
if not self.initialize():
raise RuntimeError("Model not initialized")
# Conservative truncation for long texts
if (len(text) > 2000):
text = text[:2000]
logger.warning(f"Text too long, truncated to {len(text)} characters for language detection")
# Get prediction
predictions = self.classifier(text, top_k = 5)
# Parse results
all_languages = dict()
primary_lang = None
primary_conf = 0.0
for pred in predictions:
lang_code = pred['label']
score = pred['score']
# Handle model output format (might be like "en_XX" or just "en")
if ('_' in lang_code):
lang_code = lang_code.split('_')[0]
all_languages[lang_code] = score
if (score > primary_conf):
primary_conf = score
primary_lang = lang_code
# Convert to Language enum
try:
primary_language = Language(primary_lang)
except ValueError:
primary_language = Language.UNKNOWN
return LanguageDetectionResult(primary_language = primary_language,
confidence = primary_conf,
all_languages = all_languages,
script = Script.UNKNOWN,
is_multilingual = False,
detection_method = "model",
char_count = 0,
word_count = 0,
warnings = [],
)
def _detect_with_langdetect(self, text: str) -> LanguageDetectionResult:
"""
Detect language using langdetect library
"""
# Get all language probabilities
lang_probs = detect_langs(text)
all_languages = dict()
for prob in lang_probs:
all_languages[prob.lang] = prob.prob
# Primary language
primary = lang_probs[0]
try:
primary_language = Language(primary.lang)
except ValueError:
primary_language = Language.UNKNOWN
return LanguageDetectionResult(primary_language = primary_language,
confidence = primary.prob,
all_languages = all_languages,
script = Script.UNKNOWN,
is_multilingual = False,
detection_method = "langdetect",
char_count = 0,
word_count = 0,
warnings = [],
)
def _detect_with_heuristics(self, text: str, script: Script) -> LanguageDetectionResult:
"""
Detect language using character-based heuristics
"""
# Script-based language mapping
script_to_language = {Script.CHINESE : Language.CHINESE,
Script.JAPANESE : Language.JAPANESE,
Script.KOREAN : Language.KOREAN,
Script.ARABIC : Language.ARABIC,
Script.CYRILLIC : Language.RUSSIAN,
Script.DEVANAGARI : Language.HINDI,
Script.GREEK : Language.GREEK,
Script.HEBREW : Language.HEBREW,
Script.THAI : Language.THAI,
}
# If script clearly indicates language
if script in script_to_language:
primary_language = script_to_language[script]
# Moderate confidence for heuristics
confidence = 0.7
else:
# For Latin script, check common words
primary_language = self._detect_latin_language(text)
# Lower confidence
confidence = 0.5
return LanguageDetectionResult(primary_language = primary_language,
confidence = confidence,
all_languages = {primary_language.value: confidence},
script = script,
is_multilingual = False,
detection_method = "heuristics",
char_count = 0,
word_count = 0,
warnings = ["Detection using heuristics, accuracy may be limited"],
)
def _detect_latin_language(self, text: str) -> Language:
"""
Detect Latin-script language using common word patterns
"""
text_lower = text.lower()
# Common word patterns for major Latin-script languages
patterns = {Language.ENGLISH : ['the', 'and', 'is', 'in', 'to', 'of', 'a', 'that', 'it', 'with', 'for', 'on', 'this', 'are', 'was', 'be', 'have', 'from', 'or', 'by'],
Language.SPANISH : ['el', 'la', 'de', 'que', 'y', 'en', 'un', 'por', 'con', 'no', 'una', 'para', 'es', 'al', 'como', 'del', 'los', 'se', 'las', 'su'],
Language.FRENCH : ['le', 'de', 'un', 'être', 'et', 'à', 'il', 'avoir', 'ne', 'je', 'son', 'que', 'ce', 'du', 'quel', 'elle', 'dans', 'pour', 'au', 'avec'],
Language.GERMAN : ['der', 'die', 'und', 'in', 'den', 'von', 'zu', 'das', 'mit', 'sich', 'des', 'auf', 'für', 'ist', 'im', 'dem', 'nicht', 'ein', 'eine', 'als'],
Language.ITALIAN : ['di', 'e', 'il', 'la', 'che', 'per', 'un', 'in', 'è', 'a', 'non', 'una', 'da', 'sono', 'come', 'del', 'ma', 'si', 'nel', 'anche'],
Language.PORTUGUESE : ['de', 'a', 'o', 'que', 'e', 'do', 'da', 'em', 'um', 'para', 'é', 'com', 'não', 'uma', 'os', 'no', 'se', 'na', 'por', 'mais'],
}
# Count matches for each language
scores = dict()
words = set(text_lower.split())
for lang, common_words in patterns.items():
score = sum(1 for word in common_words if word in words)
scores[lang] = score
# Return language with highest score
if scores:
best_lang = max(scores.items(), key = lambda x: x[1])
# At least 3 matches
if (best_lang[1] > 2):
return best_lang[0]
# Default to English for Latin script
return Language.ENGLISH
def _detect_script(self, text: str) -> Script:
"""
Detect the writing script used in text
"""
# Count characters in each script
script_counts = {script: 0 for script in Script if script not in [Script.MIXED, Script.UNKNOWN]}
for char in text:
if char in string.whitespace or char in string.punctuation:
continue
code_point = ord(char)
for script, ranges in self.SCRIPT_RANGES.items():
for start, end in ranges:
if (start <= code_point <= end):
script_counts[script] += 1
break
# Find dominant script
total_chars = sum(script_counts.values())
if (total_chars == 0):
return Script.UNKNOWN
# Calculate percentages
script_percentages = {script: count / total_chars for script, count in script_counts.items() if count > 0}
# Check if mixed (no single script > 70%)
if (len(script_percentages) > 1):
max_percentage = max(script_percentages.values())
if (max_percentage < 0.7):
return Script.MIXED
# Return dominant script
if script_percentages:
return max(script_percentages.items(), key=lambda x: x[1])[0]
return Script.UNKNOWN
def _clean_text(self, text: str) -> str:
"""
Clean text for language detection
"""
# Remove URLs
text = re.sub(r'https?://\S+', '', text)
text = re.sub(r'www\.\S+', '', text)
# Remove emails
text = re.sub(r'\S+@\S+', '', text)
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
return text.strip()
def _create_unknown_result(self, text: str, warnings: List[str]) -> LanguageDetectionResult:
"""
Create result for unknown language
"""
return LanguageDetectionResult(primary_language = Language.UNKNOWN,
confidence = 0.0,
all_languages = {},
script = Script.UNKNOWN,
is_multilingual = False,
detection_method = "none",
char_count = len(text),
word_count = len(text.split()),
warnings = warnings,
)
def is_language(self, text: str, target_language: Language, threshold: float = 0.7) -> bool:
"""
Check if text is in a specific language
Arguments:
----------
text : Input text
target_language : Language to check for
threshold : Minimum confidence threshold
Returns:
--------
{ bool } : True if text is in target language with sufficient confidence
"""
result = self.detect(text)
return (result.primary_language == target_language and (result.confidence >= threshold))
def get_supported_languages(self) -> List[str]:
"""
Get list of supported language codes
"""
return [lang.value for lang in Language if lang != Language.UNKNOWN]
def cleanup(self):
"""
Clean up resources
"""
self.classifier = None
self.is_initialized = False
# ==================== Convenience Functions ====================
def quick_detect(text: str, **kwargs) -> LanguageDetectionResult:
"""
Quick language detection with default settings
Arguments:
----------
text : Input text
**kwargs : Override settings
Returns:
--------
LanguageDetectionResult object
"""
detector = LanguageDetector(**kwargs)
if detector.use_model:
detector.initialize()
return detector.detect(text)
def is_english(text: str, threshold: float = 0.7) -> bool:
"""
Quick check if text is English
"""
detector = LanguageDetector(use_model = True)
is_english = detector.is_language(text, Language.ENGLISH, threshold)
return is_english
# Export
__all__ = ['Script',
'Language',
'is_english',
'quick_detect',
'LanguageDetector',
'LanguageDetectionResult',
]
# ==================== Testing ====================
if __name__ == "__main__":
# Test cases
test_texts = {"English" : "This is a sample text written in English. It contains multiple sentences to test the language detection system.",
"Spanish" : "Este es un texto de ejemplo escrito en español. Contiene múltiples oraciones para probar el sistema de detección de idiomas.",
"French" : "Ceci est un exemple de texte écrit en français. Il contient plusieurs phrases pour tester le système de détection de langue.",
"German" : "Dies ist ein Beispieltext in deutscher Sprache. Es enthält mehrere Sätze zum Testen des Spracherkennungssystems.",
"Chinese" : "这是用中文写的示例文本。它包含多个句子来测试语言检测系统。",
"Russian" : "Это пример текста, написанного на русском языке. Он содержит несколько предложений для проверки системы определения языка.",
"Mixed" : "This is English. Este es español. C'est français.",
"Short" : "Hello",
}
detector = LanguageDetector(use_model = True) # Use fast mode for testing
for name, text in test_texts.items():
print(f"\n{'='*70}")
print(f"Testing: {name}")
print(f"{'='*70}")
print(f"Text: {text[:80]}...")
result = detector.detect(text)
print(f"\nPrimary Language: {result.primary_language.value}")
print(f"Confidence: {result.confidence:.2f}")
print(f"Script: {result.script.value}")
print(f"Method: {result.detection_method}")
print(f"Multilingual: {result.is_multilingual}")
if result.warnings:
print(f"Warnings: {result.warnings}")
if (len(result.all_languages) > 1):
print("\nAll detected languages:")
for lang, conf in sorted(result.all_languages.items(), key = lambda x: x[1], reverse = True)[:3]:
print(f" {lang}: {conf:.2f}")