Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
def train_and_deploy(write_token, repo_name, license_text):
|
| 7 |
+
# トークンを環境変数に設定
|
| 8 |
+
os.environ['HF_WRITE_TOKEN'] = write_token
|
| 9 |
+
|
| 10 |
+
# ライセンスファイルを作成
|
| 11 |
+
with open("LICENSE", "w") as f:
|
| 12 |
+
f.write(license_text)
|
| 13 |
+
|
| 14 |
+
# モデルとトークナイザーの読み込み
|
| 15 |
+
model_name = "HuggingfaceH4/zephyr-7b-beta" # トレーニング対象のモデル
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
+
|
| 19 |
+
# 日本語データセットの読み込み
|
| 20 |
+
dataset = load_dataset("Sakalti/hachiwari")
|
| 21 |
+
|
| 22 |
+
# データセットのトークン化
|
| 23 |
+
def tokenize_function(examples):
|
| 24 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
|
| 25 |
+
|
| 26 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 27 |
+
|
| 28 |
+
# トレーニング設定
|
| 29 |
+
training_args = TrainingArguments(
|
| 30 |
+
output_dir="./results",
|
| 31 |
+
per_device_train_batch_size=8,
|
| 32 |
+
per_device_eval_batch_size=8,
|
| 33 |
+
evaluation_strategy="epoch",
|
| 34 |
+
save_strategy="epoch",
|
| 35 |
+
logging_dir="./logs",
|
| 36 |
+
logging_steps=10,
|
| 37 |
+
num_train_epochs=3, # トレーニングエポック数
|
| 38 |
+
push_to_hub=True, # Hugging Face Hubにプッシュ
|
| 39 |
+
hub_token=write_token,
|
| 40 |
+
hub_model_id=repo_name # ユーザーが入力したリポジトリ名
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Trainerの設定
|
| 44 |
+
trainer = Trainer(
|
| 45 |
+
model=model,
|
| 46 |
+
args=training_args,
|
| 47 |
+
train_dataset=tokenized_datasets["train"],
|
| 48 |
+
eval_dataset=tokenized_datasets["test"],
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# トレーニング実行
|
| 52 |
+
trainer.train()
|
| 53 |
+
|
| 54 |
+
# モデルをHugging Face Hubにプッシュ
|
| 55 |
+
trainer.push_to_hub()
|
| 56 |
+
|
| 57 |
+
return f"モデルが'{repo_name}'リポジトリにデプロイされました!"
|
| 58 |
+
|
| 59 |
+
# Gradio UI
|
| 60 |
+
with gr.Blocks() as demo:
|
| 61 |
+
gr.Markdown("### Zephyr-7B モデルの日本語特化トレーニングとデプロイ")
|
| 62 |
+
token_input = gr.Textbox(label="Hugging Face Write Token", placeholder="トークンを入力してください...")
|
| 63 |
+
repo_input = gr.Textbox(label="リポジトリ名", placeholder="デプロイするリポジトリ名を入力してください...")
|
| 64 |
+
license_input = gr.Textbox(label="ライセンス", placeholder="ライセンス情報を入力してください...")
|
| 65 |
+
output = gr.Textbox(label="出力")
|
| 66 |
+
train_button = gr.Button("デプロイ")
|
| 67 |
+
|
| 68 |
+
train_button.click(fn=train_and_deploy, inputs=[token_input, repo_input, license_input], outputs=output)
|
| 69 |
+
|
| 70 |
+
demo.launch()
|