Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import spaces | |
| model_name = "Sakalti/SakalFusion-7B-Alpha" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| def generate(prompt, history, top_p, top_k, max_new_tokens, repetition_penalty, temperature): | |
| messages = [ | |
| {"role": "system", "content": "γγͺγγ―γγ¬γ³γγͺγΌγͺγγ£γγγγγγ§γγ"}, | |
| {"role": "user", "content": prompt} | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| generated_ids = model.generate( | |
| **model_inputs, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| temperature=temperature | |
| ) | |
| generated_ids = [ | |
| output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return response, history + [[prompt, response]] | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox() | |
| clear = gr.Button("Clear") | |
| with gr.Row(): | |
| top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top P") | |
| top_k = gr.Slider(0, 100, value=50, label="Top K") | |
| max_new_tokens = gr.Slider(1, 2048, value=864, label="Max New Tokens") | |
| repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="Repetition Penalty") | |
| temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperature") | |
| def respond(message, chat_history, top_p, top_k, max_new_tokens, repetition_penalty, temperature): | |
| bot_message, chat_history = generate(message, chat_history, top_p, top_k, max_new_tokens, repetition_penalty, temperature) | |
| return "", chat_history, chat_history | |
| msg.submit(respond, [msg, chatbot, top_p, top_k, max_new_tokens, repetition_penalty, temperature], [msg, chatbot, chatbot]) | |
| clear.click(lambda: ([], []), None, [chatbot, msg]) | |
| demo.launch(share=True) |