Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import open_clip | |
| import torch | |
| import requests | |
| import numpy as np | |
| from PIL import Image | |
| shapes = ["leggings", "jogger", | |
| "palazzo", "cargo", | |
| "dresspants", "chinos"] | |
| model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP') | |
| tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP') | |
| shapes_desc = list(map(lambda x: "a " + x + " pants shape", shapes)) | |
| text = tokenizer(shapes_desc) | |
| with torch.no_grad(), torch.cuda.amp.autocast(): | |
| text_features = model.encode_text(text) | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| def predict(inp): | |
| image = preprocess_val(inp).unsqueeze(0) | |
| with torch.no_grad(), torch.cuda.amp.autocast(): | |
| image_features = model.encode_image(image) | |
| image_features /= image_features.norm(dim=-1, keepdim=True) | |
| text_probs = (100 * image_features @ text_features.T).softmax(dim=-1) | |
| confidences = {shapes[i]: float(text_probs[0, i]) for i in range(6)} | |
| return confidences | |
| gr.Interface(fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Label(num_top_classes=6), | |
| examples=["imgs/cargo.jpg", "imgs/palazzo.jpg", | |
| "imgs/leggings.jpg", "imgs/jogger.jpg", | |
| "imgs/chinos.jpg", "imgs/dresspants.jpg"]).launch(share=True) | |