updated the code
Browse files- README.md +87 -12
- app.py.py +501 -0
- requirements.txt +9 -0
README.md
CHANGED
|
@@ -1,14 +1,89 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
| 1 |
+
# 🖼️ Qwen2.5-VL Image Analysis
|
| 2 |
+
|
| 3 |
+
A powerful vision-language model interface for advanced image understanding tasks, built with Gradio and optimized for Hugging Face Spaces.
|
| 4 |
+
|
| 5 |
+
## 🚀 Features
|
| 6 |
+
|
| 7 |
+
- **Multi-Model Support**: Choose between Qwen2.5-VL-3B (faster) and Qwen2.5-VL-7B (higher quality)
|
| 8 |
+
- **Advanced Image Analysis**: OCR, object detection, scene description, emotion analysis
|
| 9 |
+
- **Real-time Streaming**: See responses generated in real-time
|
| 10 |
+
- **Customizable Parameters**: Adjust temperature, top-p, top-k, and more
|
| 11 |
+
- **User-friendly Interface**: Clean, modern UI with example prompts
|
| 12 |
+
|
| 13 |
+
## 🤖 Supported Models
|
| 14 |
+
|
| 15 |
+
### Qwen2.5-VL-3B-Instruct
|
| 16 |
+
- **Speed**: ⚡ Fast inference
|
| 17 |
+
- **Memory**: Lower GPU memory requirements
|
| 18 |
+
- **Use Case**: Quick analysis, general image understanding
|
| 19 |
+
|
| 20 |
+
### Qwen2.5-VL-7B-Instruct
|
| 21 |
+
- **Quality**: 🔬 Higher accuracy and detail
|
| 22 |
+
- **Memory**: Higher GPU memory requirements
|
| 23 |
+
- **Use Case**: Complex analysis, detailed OCR, research tasks
|
| 24 |
+
|
| 25 |
+
## 💡 Use Cases
|
| 26 |
+
|
| 27 |
+
- 📄 **Document OCR**: Extract and transcribe text from images
|
| 28 |
+
- 🔍 **Object Detection**: Identify and count objects in images
|
| 29 |
+
- 🎨 **Art Analysis**: Analyze composition, colors, and artistic style
|
| 30 |
+
- 📊 **Chart Interpretation**: Understand graphs, charts, and diagrams
|
| 31 |
+
- 😊 **Emotion Detection**: Identify emotions and moods in images
|
| 32 |
+
- 🏛️ **Scene Understanding**: Describe locations, settings, and contexts
|
| 33 |
+
- 🔒 **Safety Analysis**: Identify potential hazards or safety concerns
|
| 34 |
+
|
| 35 |
+
## 🛠️ Usage Instructions
|
| 36 |
+
|
| 37 |
+
1. **Load Model**: Select your preferred model (3B or 7B) and click "Load Selected Model"
|
| 38 |
+
2. **Upload Image**: Click the image upload area and select your image
|
| 39 |
+
3. **Ask Question**: Enter your question about the image in the text box
|
| 40 |
+
4. **Analyze**: Click "Analyze Image" or press Enter to get the AI response
|
| 41 |
+
5. **Adjust Settings**: Use the Advanced Settings accordion for fine-tuning
|
| 42 |
+
|
| 43 |
+
## 📝 Example Prompts
|
| 44 |
+
|
| 45 |
+
- "Describe this image in detail"
|
| 46 |
+
- "What text is visible in this image?"
|
| 47 |
+
- "Count the number of people in this image"
|
| 48 |
+
- "What emotions are expressed in this image?"
|
| 49 |
+
- "Analyze the artistic style and composition"
|
| 50 |
+
- "What safety concerns can you identify?"
|
| 51 |
+
|
| 52 |
+
## ⚙️ Advanced Settings
|
| 53 |
+
|
| 54 |
+
- **Max New Tokens**: Control response length (1-4096)
|
| 55 |
+
- **Temperature**: Adjust creativity (0.1-2.0)
|
| 56 |
+
- **Top-p**: Control diversity (0.1-1.0)
|
| 57 |
+
- **Top-k**: Vocabulary limit per step (1-100)
|
| 58 |
+
- **Repetition Penalty**: Prevent repetitive text (1.0-2.0)
|
| 59 |
+
- **Stream Output**: Enable real-time response streaming
|
| 60 |
+
|
| 61 |
+
## 🔧 Technical Details
|
| 62 |
+
|
| 63 |
+
- **Framework**: Gradio 4.0+
|
| 64 |
+
- **Models**: Qwen2.5-VL series by Alibaba Cloud
|
| 65 |
+
- **Hardware**: GPU-optimized for CUDA devices
|
| 66 |
+
- **Precision**: FP16 for efficient inference
|
| 67 |
+
|
| 68 |
+
## 📋 Requirements
|
| 69 |
+
|
| 70 |
+
- Python 3.8+
|
| 71 |
+
- CUDA-compatible GPU (recommended)
|
| 72 |
+
- 8GB+ GPU memory for 3B model
|
| 73 |
+
- 16GB+ GPU memory for 7B model
|
| 74 |
+
|
| 75 |
+
## 🚀 Deployment
|
| 76 |
+
|
| 77 |
+
This app is optimized for Hugging Face Spaces with automatic GPU detection and model loading.
|
| 78 |
+
|
| 79 |
+
## 📄 License
|
| 80 |
+
|
| 81 |
+
This project uses the Qwen2.5-VL models which have their own licensing terms. Please refer to the original model repositories for license information.
|
| 82 |
+
|
| 83 |
+
## 🤝 Contributing
|
| 84 |
+
|
| 85 |
+
Feel free to submit issues, suggestions, or pull requests to improve this application!
|
| 86 |
+
|
| 87 |
---
|
| 88 |
|
| 89 |
+
Built with ❤️ using [Gradio](https://gradio.app/) and [Qwen2.5-VL](https://huggingface.co/Qwen) models.
|
app.py.py
ADDED
|
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Qwen2.5-VL Image Analysis App for Hugging Face Spaces
|
| 4 |
+
A powerful vision-language model interface for image understanding tasks.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
from threading import Thread
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import torch
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from transformers import (
|
| 14 |
+
Qwen2VLForConditionalGeneration,
|
| 15 |
+
AutoProcessor,
|
| 16 |
+
TextIteratorStreamer,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Constants
|
| 20 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 21 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 22 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
|
| 23 |
+
MAX_SEQUENCE_LENGTH = 12288
|
| 24 |
+
|
| 25 |
+
# Device configuration
|
| 26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
+
print(f"🚀 Using device: {device}")
|
| 28 |
+
|
| 29 |
+
# Global variables for models
|
| 30 |
+
model_7b = None
|
| 31 |
+
processor_7b = None
|
| 32 |
+
model_3b = None
|
| 33 |
+
processor_3b = None
|
| 34 |
+
|
| 35 |
+
def load_model_with_progress(model_name, progress=gr.Progress()):
|
| 36 |
+
"""Load model and processor with progress tracking"""
|
| 37 |
+
global model_7b, processor_7b, model_3b, processor_3b
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
if model_name == "Qwen/Qwen2.5-VL-7B-Instruct":
|
| 41 |
+
if model_7b is None:
|
| 42 |
+
progress(0.1, desc="🔄 Loading Qwen2.5-VL-7B-Instruct...")
|
| 43 |
+
processor_7b = AutoProcessor.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
trust_remote_code=True
|
| 46 |
+
)
|
| 47 |
+
progress(0.5, desc="🔄 Loading model weights...")
|
| 48 |
+
model_7b = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 49 |
+
model_name,
|
| 50 |
+
trust_remote_code=True,
|
| 51 |
+
torch_dtype=torch.float16,
|
| 52 |
+
device_map="auto",
|
| 53 |
+
low_cpu_mem_usage=True,
|
| 54 |
+
).eval()
|
| 55 |
+
progress(1.0, desc="✅ 7B model loaded successfully!")
|
| 56 |
+
return "✅ Qwen2.5-VL-7B-Instruct loaded and ready!", True
|
| 57 |
+
return "✅ Qwen2.5-VL-7B-Instruct already loaded!", True
|
| 58 |
+
else: # 3B model
|
| 59 |
+
if model_3b is None:
|
| 60 |
+
progress(0.1, desc="🔄 Loading Qwen2.5-VL-3B-Instruct...")
|
| 61 |
+
processor_3b = AutoProcessor.from_pretrained(
|
| 62 |
+
model_name,
|
| 63 |
+
trust_remote_code=True
|
| 64 |
+
)
|
| 65 |
+
progress(0.5, desc="🔄 Loading model weights...")
|
| 66 |
+
model_3b = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 67 |
+
model_name,
|
| 68 |
+
trust_remote_code=True,
|
| 69 |
+
torch_dtype=torch.float16,
|
| 70 |
+
device_map="auto",
|
| 71 |
+
low_cpu_mem_usage=True,
|
| 72 |
+
).eval()
|
| 73 |
+
progress(1.0, desc="✅ 3B model loaded successfully!")
|
| 74 |
+
return "✅ Qwen2.5-VL-3B-Instruct loaded and ready!", True
|
| 75 |
+
return "✅ Qwen2.5-VL-3B-Instruct already loaded!", True
|
| 76 |
+
except Exception as e:
|
| 77 |
+
error_msg = f"❌ Failed to load {model_name}: {str(e)}"
|
| 78 |
+
print(error_msg)
|
| 79 |
+
return error_msg, False
|
| 80 |
+
|
| 81 |
+
def get_loaded_model(model_name):
|
| 82 |
+
"""Get already loaded model and processor"""
|
| 83 |
+
global model_7b, processor_7b, model_3b, processor_3b
|
| 84 |
+
|
| 85 |
+
if model_name == "Qwen/Qwen2.5-VL-7B-Instruct":
|
| 86 |
+
return model_7b, processor_7b
|
| 87 |
+
else:
|
| 88 |
+
return model_3b, processor_3b
|
| 89 |
+
|
| 90 |
+
def generate_image_response(model_name: str,
|
| 91 |
+
text: str,
|
| 92 |
+
image: Image.Image,
|
| 93 |
+
max_new_tokens: int = 1024,
|
| 94 |
+
max_sequence_length: int = 8192,
|
| 95 |
+
temperature: float = 0.6,
|
| 96 |
+
top_p: float = 0.9,
|
| 97 |
+
top_k: int = 50,
|
| 98 |
+
repetition_penalty: float = 1.2,
|
| 99 |
+
stream_output: bool = True):
|
| 100 |
+
"""
|
| 101 |
+
Generate responses using the selected model for image input.
|
| 102 |
+
Always yields exactly 2 values: (raw_text, markdown_text)
|
| 103 |
+
"""
|
| 104 |
+
if image is None:
|
| 105 |
+
yield "❌ Please upload an image first.", "❌ Please upload an image first."
|
| 106 |
+
return
|
| 107 |
+
|
| 108 |
+
if not text.strip():
|
| 109 |
+
yield "❌ Please enter a question about the image.", "❌ Please enter a question about the image."
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
# Check if model is loaded
|
| 113 |
+
model, processor = get_loaded_model(model_name)
|
| 114 |
+
if model is None or processor is None:
|
| 115 |
+
yield "❌ Please select and load a model first.", "❌ Please select and load a model first."
|
| 116 |
+
return
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
# Prepare messages
|
| 120 |
+
messages = [{
|
| 121 |
+
"role": "user",
|
| 122 |
+
"content": [
|
| 123 |
+
{"type": "image", "image": image},
|
| 124 |
+
{"type": "text", "text": text},
|
| 125 |
+
]
|
| 126 |
+
}]
|
| 127 |
+
|
| 128 |
+
# Apply chat template
|
| 129 |
+
prompt_full = processor.apply_chat_template(
|
| 130 |
+
messages,
|
| 131 |
+
tokenize=False,
|
| 132 |
+
add_generation_prompt=True
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Prepare inputs with sequence length limit
|
| 136 |
+
inputs = processor(
|
| 137 |
+
text=[prompt_full],
|
| 138 |
+
images=[image],
|
| 139 |
+
return_tensors="pt",
|
| 140 |
+
padding=True,
|
| 141 |
+
truncation=True,
|
| 142 |
+
max_length=min(max_sequence_length, MAX_SEQUENCE_LENGTH)
|
| 143 |
+
).to(device)
|
| 144 |
+
|
| 145 |
+
if stream_output:
|
| 146 |
+
# Streaming generation
|
| 147 |
+
streamer = TextIteratorStreamer(
|
| 148 |
+
processor.tokenizer,
|
| 149 |
+
skip_prompt=True,
|
| 150 |
+
skip_special_tokens=True
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
generation_kwargs = {
|
| 154 |
+
**inputs,
|
| 155 |
+
"streamer": streamer,
|
| 156 |
+
"max_new_tokens": max_new_tokens,
|
| 157 |
+
"do_sample": True,
|
| 158 |
+
"temperature": temperature,
|
| 159 |
+
"top_p": top_p,
|
| 160 |
+
"top_k": top_k,
|
| 161 |
+
"repetition_penalty": repetition_penalty,
|
| 162 |
+
"pad_token_id": processor.tokenizer.eos_token_id,
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 166 |
+
thread.start()
|
| 167 |
+
|
| 168 |
+
buffer = ""
|
| 169 |
+
try:
|
| 170 |
+
for new_text in streamer:
|
| 171 |
+
buffer += new_text
|
| 172 |
+
time.sleep(0.01)
|
| 173 |
+
# Always yield exactly 2 values
|
| 174 |
+
yield buffer, buffer
|
| 175 |
+
thread.join()
|
| 176 |
+
except Exception as stream_error:
|
| 177 |
+
thread.join()
|
| 178 |
+
error_msg = f"❌ Streaming Error: {str(stream_error)}"
|
| 179 |
+
yield error_msg, error_msg
|
| 180 |
+
else:
|
| 181 |
+
# Complete generation
|
| 182 |
+
generation_kwargs = {
|
| 183 |
+
**inputs,
|
| 184 |
+
"max_new_tokens": max_new_tokens,
|
| 185 |
+
"do_sample": True,
|
| 186 |
+
"temperature": temperature,
|
| 187 |
+
"top_p": top_p,
|
| 188 |
+
"top_k": top_k,
|
| 189 |
+
"repetition_penalty": repetition_penalty,
|
| 190 |
+
"pad_token_id": processor.tokenizer.eos_token_id,
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
with torch.no_grad():
|
| 194 |
+
outputs = model.generate(**generation_kwargs)
|
| 195 |
+
|
| 196 |
+
# Decode response
|
| 197 |
+
generated_ids = outputs[0][len(inputs['input_ids'][0]):]
|
| 198 |
+
response = processor.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 199 |
+
# Always yield exactly 2 values
|
| 200 |
+
yield response, response
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
error_msg = f"❌ Error: {str(e)}"
|
| 204 |
+
print(f"Generation error: {e}")
|
| 205 |
+
# Always yield exactly 2 values
|
| 206 |
+
yield error_msg, error_msg
|
| 207 |
+
|
| 208 |
+
# Define comprehensive examples for image inference
|
| 209 |
+
image_examples = [
|
| 210 |
+
["Describe this image in detail.", None],
|
| 211 |
+
["What objects can you see in this image? Count them if possible.", None],
|
| 212 |
+
["Extract and transcribe any text visible in this image.", None],
|
| 213 |
+
["Analyze the composition, colors, and artistic style of this image.", None],
|
| 214 |
+
["What emotions or mood does this image convey?", None],
|
| 215 |
+
["Identify any people in the image and describe what they are doing.", None],
|
| 216 |
+
["What is the setting or location of this image?", None],
|
| 217 |
+
["Are there any safety concerns or hazards visible in this image?", None]
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
+
# Custom CSS for better UI
|
| 221 |
+
css = """
|
| 222 |
+
.gradio-container {
|
| 223 |
+
max-width: 1200px !important;
|
| 224 |
+
margin: auto !important;
|
| 225 |
+
}
|
| 226 |
+
.submit-btn {
|
| 227 |
+
background: linear-gradient(45deg, #2980b9, #3498db) !important;
|
| 228 |
+
color: white !important;
|
| 229 |
+
border-radius: 8px !important;
|
| 230 |
+
font-weight: bold !important;
|
| 231 |
+
border: none !important;
|
| 232 |
+
}
|
| 233 |
+
.submit-btn:hover {
|
| 234 |
+
background: linear-gradient(45deg, #3498db, #5dade2) !important;
|
| 235 |
+
transform: translateY(-1px) !important;
|
| 236 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 237 |
+
}
|
| 238 |
+
.clear-btn {
|
| 239 |
+
background: linear-gradient(45deg, #e74c3c, #ec7063) !important;
|
| 240 |
+
color: white !important;
|
| 241 |
+
border-radius: 8px !important;
|
| 242 |
+
border: none !important;
|
| 243 |
+
}
|
| 244 |
+
.output-box {
|
| 245 |
+
border: 2px solid #3498db !important;
|
| 246 |
+
border-radius: 12px !important;
|
| 247 |
+
padding: 20px !important;
|
| 248 |
+
background: linear-gradient(145deg, #f8f9fa, #e9ecef) !important;
|
| 249 |
+
box-shadow: inset 0 2px 4px rgba(0,0,0,0.1) !important;
|
| 250 |
+
}
|
| 251 |
+
.model-info {
|
| 252 |
+
background: linear-gradient(145deg, #ebf3fd, #d6eaf8) !important;
|
| 253 |
+
border-radius: 10px !important;
|
| 254 |
+
padding: 15px !important;
|
| 255 |
+
border-left: 4px solid #3498db !important;
|
| 256 |
+
}
|
| 257 |
+
.image-upload {
|
| 258 |
+
border: 2px dashed #3498db !important;
|
| 259 |
+
border-radius: 10px !important;
|
| 260 |
+
padding: 20px !important;
|
| 261 |
+
text-align: center !important;
|
| 262 |
+
}
|
| 263 |
+
"""
|
| 264 |
+
|
| 265 |
+
def create_interface():
|
| 266 |
+
"""Create the main Gradio interface"""
|
| 267 |
+
with gr.Blocks(css=css, title="🖼️ Qwen2.5-VL Image Analysis", theme=gr.themes.Soft()) as demo:
|
| 268 |
+
gr.Markdown("""
|
| 269 |
+
# 🖼️ **Qwen2.5-VL Image Analysis**
|
| 270 |
+
### 🚀 Powerful Vision-Language Models for Advanced Image Understanding
|
| 271 |
+
|
| 272 |
+
Upload any image and ask questions about it! Perfect for OCR, object detection, image description, and more.
|
| 273 |
+
""")
|
| 274 |
+
|
| 275 |
+
with gr.Row():
|
| 276 |
+
with gr.Column(scale=1):
|
| 277 |
+
gr.Markdown("### 🤖 **Model Selection**")
|
| 278 |
+
|
| 279 |
+
model_choice = gr.Dropdown(
|
| 280 |
+
choices=["Qwen/Qwen2.5-VL-3B-Instruct", "Qwen/Qwen2.5-VL-7B-Instruct"],
|
| 281 |
+
label="🔮 Select Vision-Language Model",
|
| 282 |
+
value="Qwen/Qwen2.5-VL-3B-Instruct",
|
| 283 |
+
info="Choose your model: 3B (faster) or 7B (better quality)",
|
| 284 |
+
elem_classes="model-dropdown"
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
model_status = gr.Textbox(
|
| 288 |
+
label="📊 Model Status",
|
| 289 |
+
value="⏳ Click 'Load Model' to initialize...",
|
| 290 |
+
interactive=False,
|
| 291 |
+
elem_classes="model-status"
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
load_model_btn = gr.Button(
|
| 295 |
+
"🚀 Load Selected Model",
|
| 296 |
+
elem_classes="load-model-btn",
|
| 297 |
+
variant="primary"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
gr.Markdown("---")
|
| 301 |
+
gr.Markdown("### 📝 **Input Section**")
|
| 302 |
+
|
| 303 |
+
image_query = gr.Textbox(
|
| 304 |
+
label="🤔 Your Question About the Image",
|
| 305 |
+
placeholder="e.g., 'Describe this image in detail', 'What text is visible?', 'Count the objects'...",
|
| 306 |
+
lines=3,
|
| 307 |
+
value="Describe this image in detail."
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
image_upload = gr.Image(
|
| 311 |
+
type="pil",
|
| 312 |
+
label="📸 Upload Your Image",
|
| 313 |
+
elem_classes="image-upload"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
clear_btn = gr.Button("🗑️ Clear All", elem_classes="clear-btn", variant="secondary")
|
| 318 |
+
analyze_btn = gr.Button("🔍 Analyze Image", elem_classes="submit-btn", variant="primary", scale=2)
|
| 319 |
+
|
| 320 |
+
gr.Examples(
|
| 321 |
+
examples=image_examples,
|
| 322 |
+
inputs=[image_query, image_upload],
|
| 323 |
+
label="💡 **Try These Example Prompts:**"
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
with gr.Accordion("⚙️ **Advanced Settings**", open=False):
|
| 327 |
+
with gr.Row():
|
| 328 |
+
max_new_tokens = gr.Slider(
|
| 329 |
+
label="📝 Max New Tokens",
|
| 330 |
+
minimum=1,
|
| 331 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
| 332 |
+
step=1,
|
| 333 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
| 334 |
+
info="Maximum tokens in the response"
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
max_sequence_length = gr.Slider(
|
| 338 |
+
label="📏 Max Sequence Length",
|
| 339 |
+
minimum=1024,
|
| 340 |
+
maximum=MAX_SEQUENCE_LENGTH,
|
| 341 |
+
step=256,
|
| 342 |
+
value=8192,
|
| 343 |
+
info="Total sequence length (input + output)"
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
with gr.Row():
|
| 347 |
+
temperature = gr.Slider(
|
| 348 |
+
label="🌡️ Temperature",
|
| 349 |
+
minimum=0.1,
|
| 350 |
+
maximum=2.0,
|
| 351 |
+
step=0.1,
|
| 352 |
+
value=0.6,
|
| 353 |
+
info="Controls creativity (higher = more creative)"
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
top_p = gr.Slider(
|
| 357 |
+
label="🎯 Top-p",
|
| 358 |
+
minimum=0.1,
|
| 359 |
+
maximum=1.0,
|
| 360 |
+
step=0.05,
|
| 361 |
+
value=0.9,
|
| 362 |
+
info="Controls diversity"
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
with gr.Row():
|
| 366 |
+
top_k = gr.Slider(
|
| 367 |
+
label="🔝 Top-k",
|
| 368 |
+
minimum=1,
|
| 369 |
+
maximum=100,
|
| 370 |
+
step=1,
|
| 371 |
+
value=50,
|
| 372 |
+
info="Vocabulary limit per step"
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
repetition_penalty = gr.Slider(
|
| 376 |
+
label="🔄 Repetition Penalty",
|
| 377 |
+
minimum=1.0,
|
| 378 |
+
maximum=2.0,
|
| 379 |
+
step=0.05,
|
| 380 |
+
value=1.2,
|
| 381 |
+
info="Prevents repetitive text"
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
stream_output = gr.Checkbox(
|
| 385 |
+
label="📡 Stream Output",
|
| 386 |
+
value=True,
|
| 387 |
+
info="Show response in real-time"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
with gr.Column(scale=1):
|
| 391 |
+
gr.Markdown("### 📤 **Analysis Results**")
|
| 392 |
+
|
| 393 |
+
with gr.Column(elem_classes="output-box"):
|
| 394 |
+
output = gr.Textbox(
|
| 395 |
+
label="🤖 AI Response",
|
| 396 |
+
interactive=False,
|
| 397 |
+
lines=15,
|
| 398 |
+
show_copy_button=True,
|
| 399 |
+
placeholder="Upload an image and click 'Analyze Image' to see the AI's response here..."
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
with gr.Accordion("📋 **Formatted Output**", open=False):
|
| 403 |
+
markdown_output = gr.Markdown()
|
| 404 |
+
|
| 405 |
+
with gr.Column(elem_classes="model-info"):
|
| 406 |
+
gr.Markdown("""
|
| 407 |
+
### 🤖 **Model Information**
|
| 408 |
+
|
| 409 |
+
**⚡ Qwen2.5-VL-3B-Instruct**:
|
| 410 |
+
- Lightweight vision-language model
|
| 411 |
+
- Good performance with faster speed
|
| 412 |
+
- Ideal for quick analysis tasks
|
| 413 |
+
|
| 414 |
+
**🔬 Qwen2.5-VL-7B-Instruct**:
|
| 415 |
+
- Advanced multimodal AI model
|
| 416 |
+
- Excellent for detailed analysis, OCR, complex reasoning
|
| 417 |
+
- Best quality but slower inference
|
| 418 |
+
|
| 419 |
+
---
|
| 420 |
+
|
| 421 |
+
### 💡 **Usage Tips**
|
| 422 |
+
- Load a model first using the "Load Selected Model" button
|
| 423 |
+
- Upload clear, high-resolution images for best results
|
| 424 |
+
- Be specific in your questions for more detailed answers
|
| 425 |
+
- Try different prompts: analysis, OCR, counting, emotions, etc.
|
| 426 |
+
- Enable streaming to see responses in real-time
|
| 427 |
+
|
| 428 |
+
### 🔧 **Perfect for:**
|
| 429 |
+
- 📄 Document OCR and text extraction
|
| 430 |
+
- 🔍 Object detection and counting
|
| 431 |
+
- 🎨 Art and image analysis
|
| 432 |
+
- 📊 Chart and graph interpretation
|
| 433 |
+
- 😊 Emotion and mood detection
|
| 434 |
+
- 🏛️ Scene and location identification
|
| 435 |
+
""")
|
| 436 |
+
|
| 437 |
+
# Event handlers
|
| 438 |
+
def clear_all():
|
| 439 |
+
return "", None, "", ""
|
| 440 |
+
|
| 441 |
+
def analyze_image_wrapper(*args):
|
| 442 |
+
"""Wrapper to properly handle generator output for Gradio"""
|
| 443 |
+
try:
|
| 444 |
+
for result in generate_image_response(*args):
|
| 445 |
+
yield result
|
| 446 |
+
except Exception as e:
|
| 447 |
+
error_msg = f"❌ Analysis Error: {str(e)}"
|
| 448 |
+
yield error_msg, error_msg
|
| 449 |
+
|
| 450 |
+
# Load model event
|
| 451 |
+
load_model_btn.click(
|
| 452 |
+
fn=load_model_with_progress,
|
| 453 |
+
inputs=[model_choice],
|
| 454 |
+
outputs=[model_status]
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
# Clear all event
|
| 458 |
+
clear_btn.click(
|
| 459 |
+
fn=clear_all,
|
| 460 |
+
outputs=[image_query, image_upload, output, markdown_output]
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
# Analyze image event
|
| 464 |
+
analyze_btn.click(
|
| 465 |
+
fn=analyze_image_wrapper,
|
| 466 |
+
inputs=[
|
| 467 |
+
model_choice, image_query, image_upload,
|
| 468 |
+
max_new_tokens, max_sequence_length, temperature,
|
| 469 |
+
top_p, top_k, repetition_penalty, stream_output
|
| 470 |
+
],
|
| 471 |
+
outputs=[output, markdown_output]
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
# Auto-analyze on Enter key in query box
|
| 475 |
+
image_query.submit(
|
| 476 |
+
fn=analyze_image_wrapper,
|
| 477 |
+
inputs=[
|
| 478 |
+
model_choice, image_query, image_upload,
|
| 479 |
+
max_new_tokens, max_sequence_length, temperature,
|
| 480 |
+
top_p, top_k, repetition_penalty, stream_output
|
| 481 |
+
],
|
| 482 |
+
outputs=[output, markdown_output]
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
return demo
|
| 486 |
+
|
| 487 |
+
# Main application
|
| 488 |
+
if __name__ == "__main__":
|
| 489 |
+
print("🚀 Initializing Qwen2.5-VL Image Analysis App for Hugging Face Spaces...")
|
| 490 |
+
|
| 491 |
+
# Create and launch the interface
|
| 492 |
+
demo = create_interface()
|
| 493 |
+
|
| 494 |
+
# Launch with Hugging Face Spaces settings
|
| 495 |
+
demo.launch(
|
| 496 |
+
server_name="0.0.0.0",
|
| 497 |
+
server_port=7860,
|
| 498 |
+
share=False,
|
| 499 |
+
show_error=True,
|
| 500 |
+
debug=False
|
| 501 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
torchvision>=0.15.0
|
| 3 |
+
transformers>=4.37.0
|
| 4 |
+
gradio>=4.0.0
|
| 5 |
+
accelerate>=0.20.0
|
| 6 |
+
pillow>=9.0.0
|
| 7 |
+
spaces>=0.19.0
|
| 8 |
+
numpy>=1.21.0
|
| 9 |
+
requests>=2.25.0
|