Spaces:
Running
Running
File size: 53,914 Bytes
53c2d1b 76c91ce 53c2d1b 1952a74 2e3971c 1952a74 f2698ac 1952a74 76c91ce 53c2d1b 9c56fb0 ba0ad54 76c91ce ba0ad54 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b f9eb985 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce cb960fa 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 1952a74 53c2d1b 76c91ce 53c2d1b 1952a74 53c2d1b 76c91ce 53c2d1b 1952a74 11d757f 1952a74 11d757f 1952a74 f2698ac 1952a74 f2698ac 1952a74 f2698ac 1952a74 1078af1 f2698ac 1078af1 1952a74 11d757f 1952a74 11d757f 1952a74 11d757f 1078af1 11d757f 1952a74 11d757f 1952a74 11d757f 1952a74 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 1952a74 53c2d1b 76c91ce 74a069f 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b daf1dbf 74a069f 53c2d1b 3fd614a ba0ad54 53c2d1b 74a069f daf1dbf 74a069f 53c2d1b daf1dbf 74a069f 53c2d1b daf1dbf 53c2d1b 76c91ce 53c2d1b 863635a 53c2d1b 863635a 53c2d1b 863635a 53c2d1b 76c91ce 53c2d1b 1952a74 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce f6ee2b8 53c2d1b f6ee2b8 42d0184 76c91ce 53c2d1b f6ee2b8 76c91ce f9eb985 53c2d1b 76c91ce 53c2d1b 76c91ce d62bfa2 76c91ce 53c2d1b 76c91ce 53c2d1b 74a069f 863635a 74a069f 53c2d1b 76c91ce 53c2d1b 76c91ce 37b2381 76c91ce 53c2d1b 863635a 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 74a069f 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b daf1dbf 53c2d1b daf1dbf 53c2d1b 76c91ce 53c2d1b 76c91ce f2698ac 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 1952a74 53c2d1b 76c91ce 53c2d1b 1952a74 11d757f 1952a74 b32c90e f2698ac fd49481 f2698ac fd49481 f2698ac b32c90e 1952a74 f2698ac 1952a74 11d757f 1952a74 904fb3f b32c90e 96ab83e 1952a74 53c2d1b f2698ac 96ab83e f2698ac 53c2d1b f2698ac 96ab83e f2698ac 96ab83e f2698ac 96ab83e 53c2d1b 904fb3f 76c91ce 904fb3f 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b 76c91ce 53c2d1b f9eb985 53c2d1b f9eb985 53c2d1b f9eb985 53c2d1b f9eb985 c1a0591 53c2d1b 76c91ce 53c2d1b 76c91ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 |
"""
File: app.py
Description: Streamlit app for advanced topic modeling on Innerspeech dataset
with BERTopic, UMAP, HDBSCAN. (LLM features disabled for lite deployment)
Last Modified: 06/11/2025
@author: r.beaut
"""
# =====================================================================
# Imports
# =====================================================================
from pathlib import Path
import sys
# from llama_cpp import Llama # <-- REMOVED
import streamlit as st
import pandas as pd
import numpy as np
import re
import os
import nltk
import json
# from huggingface_hub import hf_hub_download, InferenceClient # for the LLM API command
from huggingface_hub import InferenceClient # for the LLM API command
from typing import Any
from io import BytesIO #Download button for the clustering image
# =====================================================================
# NLTK setup
# =====================================================================
NLTK_DATA_DIR = "/usr/local/share/nltk_data"
if NLTK_DATA_DIR not in nltk.data.path:
nltk.data.path.append(NLTK_DATA_DIR)
# Try to ensure both punkt_tab (new NLTK) and punkt (old NLTK) are available
for resource in ("punkt_tab", "punkt"):
try:
nltk.data.find(f"tokenizers/{resource}")
except LookupError:
try:
nltk.download(resource, download_dir=NLTK_DATA_DIR)
except Exception as e:
print(f"Could not download NLTK resource {resource}: {e}")
# =====================================================================
# Path utils (MOSAIC or fallback)
# =====================================================================
try:
from mosaic.path_utils import CFG, raw_path, proc_path, eval_path, project_root # type: ignore
except Exception:
# Minimal stand-in so the app works anywhere (Streamlit Cloud, local without MOSAIC, etc.)
def _env(key: str, default: str) -> Path:
val = os.getenv(key, default)
return Path(val).expanduser().resolve()
# Defaults: app-local data/ eval/ that are safe on Cloud
_DATA_ROOT = _env("MOSAIC_DATA", str(Path(__file__).parent / "data"))
_BOX_ROOT = _env("MOSAIC_BOX", str(Path(__file__).parent / "data" / "raw"))
_EVAL_ROOT = _env("MOSAIC_EVAL", str(Path(__file__).parent / "eval"))
CFG = {
"data_root": str(_DATA_ROOT),
"box_root": str(_BOX_ROOT),
"eval_root": str(_EVAL_ROOT),
}
def project_root() -> Path:
return Path(__file__).resolve().parent
def raw_path(*parts: str) -> Path:
return _BOX_ROOT.joinpath(*parts)
def proc_path(*parts: str) -> Path:
return _DATA_ROOT.joinpath(*parts)
def eval_path(*parts: str) -> Path:
return _EVAL_ROOT.joinpath(*parts)
# BERTopic stack
from bertopic import BERTopic
# from bertopic.representation import LlamaCPP # <-- REMOVED
# from llama_cpp import Llama # <-- REMOVED
from sentence_transformers import SentenceTransformer
# Clustering/dimensionality reduction
from sklearn.feature_extraction.text import CountVectorizer
from umap import UMAP
from hdbscan import HDBSCAN
# Visualisation
import datamapplot
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
# =====================================================================
# 0. Constants & Helper Functions
# =====================================================================
def _slugify(s: str) -> str:
s = s.strip()
s = re.sub(r"[^A-Za-z0-9._-]+", "_", s)
return s or "DATASET"
def _cleanup_old_cache(current_slug: str):
"""Deletes precomputed .npy files that do not match the current dataset slug."""
if not CACHE_DIR.exists():
return
removed_count = 0
# Iterate over all precomputed files
for p in CACHE_DIR.glob("precomputed_*.npy"):
# If the file belongs to a different dataset (doesn't contain the new slug)
if current_slug not in p.name:
try:
p.unlink() # Delete file
removed_count += 1
except Exception as e:
print(f"Error deleting {p.name}: {e}")
if removed_count > 0:
print(f"Auto-cleanup: Removed {removed_count} old cache files.")
# "Nice" default names we know from MOSAIC; NOT a hard constraint anymore
ACCEPTABLE_TEXT_COLUMNS = [
"reflection_answer_english",
"reflection_answer",
"text",
"report",
]
def _pick_text_column(df: pd.DataFrame) -> str | None:
"""Return the first matching *preferred* text column name if present."""
for col in ACCEPTABLE_TEXT_COLUMNS:
if col in df.columns:
return col
return None
def _list_text_columns(df: pd.DataFrame) -> list[str]:
"""
Return all columns; we’ll cast the chosen one to string later.
This makes the selector work with any column name / dtype.
"""
return list(df.columns)
def _set_from_env_or_secrets(key: str):
"""Allow hosting: value can come from environment or from Streamlit secrets."""
if os.getenv(key):
return
try:
val = st.secrets.get(key, None)
except Exception:
val = None
if val:
os.environ[key] = str(val)
# Enable both MOSAIC_DATA and MOSAIC_BOX automatically
for _k in ("MOSAIC_DATA", "MOSAIC_BOX"):
_set_from_env_or_secrets(_k)
@st.cache_data
def count_clean_reports(csv_path: str, text_col: str | None = None) -> int:
"""Count non-empty reports in the chosen text column."""
df = pd.read_csv(csv_path)
if text_col is not None and text_col in df.columns:
col = text_col
else:
col = _pick_text_column(df)
if col is None:
return 0
if col != "reflection_answer_english":
df = df.rename(columns={col: "reflection_answer_english"})
df.dropna(subset=["reflection_answer_english"], inplace=True)
df["reflection_answer_english"] = df["reflection_answer_english"].astype(str)
df = df[df["reflection_answer_english"].str.strip() != ""]
return len(df)
# =====================================================================
# 1. Streamlit app setup
# =====================================================================
st.set_page_config(page_title="MOSAIC Dashboard", layout="wide")
st.title(
"Mapping of Subjective Accounts into Interpreted Clusters (MOSAIC): "
"Topic Modelling Dashboard for Phenomenological Reports"
)
st.markdown(
"""
_If you use this tool in your research, please cite the following paper:_\n
**Beauté, R., et al. (2025).**
**Mapping of Subjective Accounts into Interpreted Clusters (MOSAIC): Topic Modelling and LLM applied to Stroboscopic Phenomenology**
https://arxiv.org/abs/2502.18318
"""
)
# =====================================================================
# 2. Dataset paths (using MOSAIC structure)
# =====================================================================
ds_input = st.sidebar.text_input(
"Project/Dataset name", value="MOSAIC", key="dataset_name_input"
)
DATASET_DIR = _slugify(ds_input).upper()
RAW_DIR = raw_path(DATASET_DIR)
PROC_DIR = proc_path(DATASET_DIR, "preprocessed")
EVAL_DIR = eval_path(DATASET_DIR)
CACHE_DIR = PROC_DIR / "cache"
PROC_DIR.mkdir(parents=True, exist_ok=True)
CACHE_DIR.mkdir(parents=True, exist_ok=True)
EVAL_DIR.mkdir(parents=True, exist_ok=True)
with st.sidebar.expander("About the dataset name", expanded=False):
st.markdown(
f"""
- The name above is converted to **UPPER CASE** and used as a folder name.
- If the folder doesn’t exist, it will be **created**:
- Preprocessed CSVs: `{PROC_DIR}`
- Exports (results): `{EVAL_DIR}`
- If you choose **Use preprocessed CSV on server**, I’ll list CSVs in `{PROC_DIR}`.
- If you **upload** a CSV, it will be saved to `{PROC_DIR}/uploaded.csv`.
""".strip()
)
def _list_server_csvs(proc_dir: Path) -> list[str]:
return [str(p) for p in sorted(proc_dir.glob("*.csv"))]
DATASETS = None # keep name for clarity; we’ll fill it when rendering the sidebar
HISTORY_FILE = str(PROC_DIR / "run_history.json")
# =====================================================================
# 3. Embedding loaders
# =====================================================================
@st.cache_resource
def load_embedding_model(model_name):
st.info(f"Loading embedding model '{model_name}'...")
return SentenceTransformer(model_name)
@st.cache_data
def load_precomputed_data(docs_file, embeddings_file):
docs = np.load(docs_file, allow_pickle=True).tolist()
emb = np.load(embeddings_file, allow_pickle=True)
return docs, emb
# =====================================================================
# 4. LLM loaders
# =====================================================================
# Approximate price for cost estimates in the UI only.
# Novita Llama 3 8B is around $0.04 per 1M input tokens
# and $0.04 per 1M output tokens – adjust if needed.
HF_APPROX_PRICE_PER_MTOKENS_USD = 0.04
#ADDED FOR LLM (START)
@st.cache_resource
def get_hf_client(model_id: str):
token = os.environ.get("HF_TOKEN")
if not token:
try:
token = st.secrets.get("HF_TOKEN")
except Exception:
token = None
# Bake the model into the client so you don't pass model= every call
client = InferenceClient(model=model_id, token=token)
return client, token
def _labels_cache_path(config_hash: str, model_id: str) -> Path:
safe_model = re.sub(r"[^a-zA-Z0-9_.-]", "_", model_id)
return CACHE_DIR / f"llm_labels_{safe_model}_{config_hash}.json"
def _hf_status_code(e: Exception) -> int | None:
"""Extract HTTP status code from a huggingface_hub error, if present."""
resp = getattr(e, "response", None)
return getattr(resp, "status_code", None)
SYSTEM_PROMPT = """You are an expert phenomenologist analysing subjective reflections from specific experiences.
Your task is to label a cluster of similar experiential reports.
The title should be:
1. HIGHLY SPECIFIC to the experiential characteristic unique to this "phenomenological" cluster
2. PHENOMENOLOGICALLY DESCRIPTIVE (focus on *what* was felt/seen).
3. DISTINCTIVE enough that it wouldn't apply equally well to other "phenomenological" clusters
4. TECHNICALLY PRECISE, using domain-specific terminology where appropriate
5. CONCEPTUALLY FOCUSED on the core specificities of this type of experience
6. CONCISE and NOUN-PHRASE LIKE (e.g. "body boundary dissolution", not "Experience of body boundary dissolution").
Constraints:
- Output ONLY the label (no explanation).
- 3–7 words.
- Avoid generic wrappers such as "experience of", "phenomenon of", "state of" unless they are absolutely necessary.
- No punctuation, no quotes, no extra text.
- Do not explain your reasoning
"""
USER_TEMPLATE = """Here is a cluster of participant reports describing a specific phenomenon:
{documents}
Top keywords associated with this cluster:
{keywords}
Task: Return a single scientifically precise label (3–7 words). Output ONLY the label.
"""
def _clean_label(x: str) -> str:
x = (x or "").strip()
x = x.splitlines()[0].strip() # first line only
x = x.strip(' "\'`')
x = re.sub(r"[.:\-–—]+$", "", x).strip() # remove trailing punctuation
# enforce "no punctuation" lightly (optional):
x = re.sub(r"[^\w\s]", "", x).strip()
# Optional: de-wrap generic "experience/phenomenon/state" wrappers
# Leading patterns like "Experiential/Experience of ..."
x = re.sub(
r"^(Experiential(?:\s+Phenomenon)?|Experience|Experience of|Subjective Experience of|Phenomenon of)\s+",
"",
x,
flags=re.IGNORECASE,
)
# Trailing "experience/phenomenon/state"
x = re.sub(
r"\s+(experience|experiences|phenomenon|state|states)$",
"",
x,
flags=re.IGNORECASE,
)
x = x.strip()
return x or "Unlabelled"
def generate_labels_via_chat_completion(
topic_model: BERTopic,
docs: list[str],
config_hash: str,
model_id: str = "meta-llama/Meta-Llama-3-8B-Instruct",
max_topics: int = 50,
max_docs_per_topic: int = 10,
doc_char_limit: int = 400,
temperature: float = 0.2, #deterministic, stable outputs.
force: bool = False) -> dict[int, str]:
"""
Label topics AFTER fitting (fast + stable on Spaces).
Returns {topic_id: label}.
"""
# Remember which HF model id we requested on the last run
st.session_state["hf_last_model_param"] = model_id
cache_path = _labels_cache_path(config_hash, model_id)
if (not force) and cache_path.exists():
try:
cached = json.loads(cache_path.read_text(encoding="utf-8"))
return {int(k): str(v) for k, v in cached.items()}
except Exception:
pass
client, token = get_hf_client(model_id)
if not token:
raise RuntimeError("No HF_TOKEN found in env/secrets.")
topic_info = topic_model.get_topic_info()
topic_info = topic_info[topic_info.Topic != -1].head(max_topics)
labels: dict[int, str] = {}
prog = st.progress(0)
total = len(topic_info)
for i, tid in enumerate(topic_info.Topic.tolist(), start=1):
words = topic_model.get_topic(tid) or []
keywords = ", ".join([w for (w, _) in words[:10]])
try:
reps = (topic_model.get_representative_docs(tid) or [])[:max_docs_per_topic]
except Exception:
reps = []
# keep prompt small
reps = [r.replace("\n", " ").strip()[:doc_char_limit] for r in reps if str(r).strip()]
if reps:
docs_block = "\n".join([f"- {r}" for r in reps])
else:
docs_block = "- (No representative docs available)"
user_prompt = USER_TEMPLATE.format(documents=docs_block, keywords=keywords)
# Store one example prompt (for UI inspection) – will be overwritten each run
st.session_state["hf_last_example_prompt"] = user_prompt
# # --- THE KEY PART: chat_completion ---
# out = client.chat_completion(
# model=model_id,
# messages=[
# {"role": "system", "content": SYSTEM_PROMPT},
# {"role": "user", "content": user_prompt},
# ],
# max_tokens=24,
# temperature=temperature,
# stop=["\n"],
# )
# # ------------------------------------
# raw = out.choices[0].message.content
# labels[int(tid)] = _clean_label(raw)
# --- THE KEY PART: chat_completion ---
try:
out = client.chat_completion(
model=model_id,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_prompt},
],
max_tokens=24, #Upper bound on how many tokens the model is allowed to generate as output for that label
temperature=temperature,
stop=["\n"],
)
# Store the provider-returned model id (if available)
provider_model = getattr(out, "model", None)
if provider_model:
st.session_state["hf_last_provider_model"] = provider_model
except Exception as e:
# Nice message for the specific 402 you're seeing
if _hf_status_code(e) == 402:
raise RuntimeError(
"Hugging Face returned 402 Payment Required for this LLM call. "
"You have used up the monthly Inference Provider credits on this "
"account. Either upgrade to PRO / enable pay-as-you-go, or skip "
"the 'Generate LLM labels (API)' step."
) from e
# Anything else: bubble up the original error
raise
# ------------------------------------
# --- Best-effort local accounting of token usage (this Streamlit session) ---
usage = getattr(out, "usage", None)
total_tokens = None
# `usage` might be a dict (raw JSON) or an object with attributes
if isinstance(usage, dict):
total_tokens = usage.get("total_tokens")
else:
total_tokens = getattr(usage, "total_tokens", None)
if total_tokens is not None:
st.session_state.setdefault("hf_tokens_total", 0)
st.session_state["hf_tokens_total"] += int(total_tokens)
# ---------------------------------------------------------------------------
raw = out.choices[0].message.content
labels[int(tid)] = _clean_label(raw)
prog.progress(int(100 * i / max(total, 1)))
try:
cache_path.write_text(json.dumps({str(k): v for k, v in labels.items()}, indent=2), encoding="utf-8")
except Exception:
pass
return labels
#ADDED FOR LLM (END)
# =====================================================================
# 5. Topic modeling function
# =====================================================================
def get_config_hash(cfg):
return json.dumps(cfg, sort_keys=True)
@st.cache_data
def perform_topic_modeling(_docs, _embeddings, config_hash):
"""Fit BERTopic using cached result."""
_docs = list(_docs)
_embeddings = np.asarray(_embeddings)
if _embeddings.dtype == object or _embeddings.ndim != 2:
try:
_embeddings = np.vstack(_embeddings)
except Exception:
st.error(
f"Embeddings are invalid (dtype={_embeddings.dtype}, ndim={_embeddings.ndim}). "
"Please click **Prepare Data** to regenerate."
)
st.stop()
_embeddings = np.ascontiguousarray(_embeddings, dtype=np.float32)
if _embeddings.shape[0] != len(_docs):
st.error(
f"Mismatch between docs and embeddings: len(docs)={len(_docs)} vs "
f"embeddings.shape[0]={_embeddings.shape[0]}. "
"Delete the cached files for this configuration and regenerate."
)
st.stop()
config = json.loads(config_hash)
if "ngram_range" in config["vectorizer_params"]:
config["vectorizer_params"]["ngram_range"] = tuple(
config["vectorizer_params"]["ngram_range"]
)
rep_model = None # <-- Use BERTopic defaults for representation
umap_model = UMAP(random_state=42, metric="cosine", **config["umap_params"])
hdbscan_model = HDBSCAN(
metric="euclidean", prediction_data=True, **config["hdbscan_params"]
)
vectorizer_model = (
CountVectorizer(**config["vectorizer_params"])
if config["use_vectorizer"]
else None
)
nr_topics_val = (
None
if config["bt_params"]["nr_topics"] == "auto"
else int(config["bt_params"]["nr_topics"])
)
topic_model = BERTopic(
umap_model=umap_model,
hdbscan_model=hdbscan_model,
vectorizer_model=vectorizer_model,
representation_model=rep_model,
top_n_words=config["bt_params"]["top_n_words"],
nr_topics=nr_topics_val,
verbose=False,
)
topics, _ = topic_model.fit_transform(_docs, _embeddings)
info = topic_model.get_topic_info()
outlier_pct = 0
if -1 in info.Topic.values:
outlier_pct = (
info.Count[info.Topic == -1].iloc[0] / info.Count.sum()
) * 100
topic_info = topic_model.get_topic_info()
name_map = topic_info.set_index("Topic")["Name"].to_dict()
all_labels = [name_map[topic] for topic in topics]
reduced = UMAP(
n_neighbors=15,
n_components=2,
min_dist=0.0,
metric="cosine",
random_state=42,
).fit_transform(_embeddings)
return topic_model, reduced, all_labels, len(info) - 1, outlier_pct
# =====================================================================
# 6. CSV → documents → embeddings pipeline
# =====================================================================
def generate_and_save_embeddings(
csv_path,
docs_file,
emb_file,
selected_embedding_model,
split_sentences,
device,
text_col=None,
min_words: int = 0, #for removal of sentences with <N words
):
# ---------------------
# Load & clean CSV
# ---------------------
st.info(f"Reading and preparing CSV: {csv_path}")
df = pd.read_csv(csv_path)
if text_col is not None and text_col in df.columns:
col = text_col
else:
col = _pick_text_column(df)
if col is None:
st.error("CSV must contain at least one text column.")
return
if col != "reflection_answer_english":
df = df.rename(columns={col: "reflection_answer_english"})
df.dropna(subset=["reflection_answer_english"], inplace=True)
df["reflection_answer_english"] = df["reflection_answer_english"].astype(str)
df = df[df["reflection_answer_english"].str.strip() != ""]
reports = df["reflection_answer_english"].tolist()
#change to add data sanity check
granularity_label = "sentences" if split_sentences else "reports"
#change to account for sentence removal when < N words
if split_sentences:
try:
sentences = [s for r in reports for s in nltk.sent_tokenize(r)]
except LookupError as e:
st.error(f"NLTK tokenizer data not found: {e}")
st.stop()
total_units_before = len(sentences)
if min_words and min_words > 0:
docs = [s for s in sentences if len(s.split()) >= min_words]
else:
docs = sentences
else:
total_units_before = len(reports)
if min_words and min_words > 0:
docs = [r for r in reports if len(str(r).split()) >= min_words]
else:
docs = reports
total_units_after = len(docs)
removed_units = total_units_before - total_units_after
# Store stats for later display in "Dataset summary"
st.session_state["last_data_stats"] = {
"granularity": granularity_label,
"min_words": int(min_words or 0),
"total_before": int(total_units_before),
"total_after": int(total_units_after),
"removed": int(removed_units),
}
if min_words and min_words > 0:
st.info(
f"Preprocessing: started with {total_units_before} {granularity_label}, "
f"removed {removed_units} shorter than {min_words} words; "
f"{total_units_after} remaining."
)
else:
st.info(f"Preprocessing: {total_units_after} {granularity_label} prepared.")
np.save(docs_file, np.array(docs, dtype=object))
st.success(f"Prepared {len(docs)} documents")
# ---------------------
# Embeddings
# ---------------------
st.info(
f"Encoding {len(docs)} documents with {selected_embedding_model} on {device}"
)
model = load_embedding_model(selected_embedding_model)
# encode_device = None
# batch_size = 32
# if device == "CPU":
# encode_device = "cpu"
# batch_size = 64
encode_device = None
batch_size = 32
# If user selected CPU explicitly, skip all checks
if device == "CPU":
encode_device = "cpu"
batch_size = 64
else:
# User selected GPU. We try CUDA -> MPS -> CPU
import torch
if torch.cuda.is_available():
encode_device = "cuda"
st.toast("Using NVIDIA GPU (CUDA)")
elif torch.backends.mps.is_available():
encode_device = "mps"
st.toast("Using Apple GPU (MPS)")
else:
encode_device = "cpu"
st.warning("No GPU found (neither CUDA nor MPS). Falling back to CPU.")
embeddings = model.encode(
docs,
show_progress_bar=True,
batch_size=batch_size,
device=encode_device,
convert_to_numpy=True,
)
embeddings = np.asarray(embeddings, dtype=np.float32)
np.save(emb_file, embeddings)
st.success("Embedding generation complete!")
st.balloons()
st.rerun()
# =====================================================================
# 7. Sidebar — dataset, upload, parameters
# =====================================================================
st.sidebar.header("Data Input Method")
source = st.sidebar.radio(
"Choose data source",
("Use preprocessed CSV on server", "Upload my own CSV"),
index=0,
key="data_source",
)
uploaded_csv_path = None
CSV_PATH = None # will be set in the chosen branch
if source == "Use preprocessed CSV on server":
available = _list_server_csvs(PROC_DIR)
if not available:
st.info(
f"No CSVs found in {PROC_DIR}. Switch to 'Upload my own CSV' or change the dataset name."
)
st.stop()
selected_csv = st.sidebar.selectbox(
"Choose a preprocessed CSV", available, key="server_csv_select"
)
CSV_PATH = selected_csv
else:
up = st.sidebar.file_uploader(
"Upload a CSV", type=["csv"], key="upload_csv"
)
st.sidebar.caption(
"Your CSV should have **one row per report** and at least one text column "
"(for example `reflection_answer_english`, `reflection_answer`, `text`, `report`, "
"or any other column containing free text). "
"Other columns (ID, condition, etc.) are allowed. "
"After upload, you’ll be able to choose which text column to analyse."
)
if up is not None:
# List of encodings to try:
# 1. utf-8 (Standard)
# 2. mac_roman (Fixes the Õ and É issues from Mac Excel)
# 3. cp1252 (Standard Windows Excel)
encodings_to_try = ['utf-8', 'mac_roman', 'cp1252', 'ISO-8859-1']
tmp_df = None
success_encoding = None
for encoding in encodings_to_try:
try:
up.seek(0) # Always reset to start of file before trying
tmp_df = pd.read_csv(up, encoding=encoding)
success_encoding = encoding
break # If we get here, it worked, so stop the loop
except UnicodeDecodeError:
continue # If it fails, try the next one
if tmp_df is None:
st.error("Could not decode file. Please save your CSV as 'CSV UTF-8' in Excel.")
st.stop()
if tmp_df.empty:
st.error("Uploaded CSV is empty.")
st.stop()
# Optional: Print which encoding worked to the logs (for your info)
print(f"Successfully loaded CSV using {success_encoding} encoding.")
# # Just save; we’ll choose the text column later
# uploaded_csv_path = str((PROC_DIR / "uploaded.csv").resolve())
# tmp_df.to_csv(uploaded_csv_path, index=False)
# st.success(f"Uploaded CSV saved to {uploaded_csv_path}")
# CSV_PATH = uploaded_csv_path
# FIX: Use the original filename to avoid cache collisions
# We sanitize the name to be safe for file systems
safe_filename = _slugify(os.path.splitext(up.name)[0])
_cleanup_old_cache(safe_filename)
uploaded_csv_path = str((PROC_DIR / f"{safe_filename}.csv").resolve())
tmp_df.to_csv(uploaded_csv_path, index=False)
st.success(f"Uploaded CSV saved to {uploaded_csv_path}")
CSV_PATH = uploaded_csv_path
else:
st.info("Upload a CSV to continue.")
st.stop()
if CSV_PATH is None:
st.stop()
# ---------------------------------------------------------------------
# Text column selection
# ---------------------------------------------------------------------
@st.cache_data
def get_text_columns(csv_path: str) -> list[str]:
df_sample = pd.read_csv(csv_path, nrows=2000)
return _list_text_columns(df_sample)
text_columns = get_text_columns(CSV_PATH)
if not text_columns:
st.error(
"No columns found in this CSV. At least one column is required."
)
st.stop()
text_columns = get_text_columns(CSV_PATH)
if not text_columns:
st.error(
"No text-like columns found in this CSV. At least one column must contain text."
)
st.stop()
# Try to pick a nice default (one of the MOSAIC-ish names) if present
try:
df_sample = pd.read_csv(CSV_PATH, nrows=2000)
preferred = _pick_text_column(df_sample)
except Exception:
preferred = None
if preferred in text_columns:
default_idx = text_columns.index(preferred)
else:
default_idx = 0
selected_text_column = st.sidebar.selectbox(
"Text column to analyse",
text_columns,
index=default_idx,
key="text_column_select",
)
# ---------------------------------------------------------------------
# Data granularity & subsampling
# ---------------------------------------------------------------------
st.sidebar.subheader("Data Granularity & Subsampling")
selected_granularity = st.sidebar.checkbox(
"Split reports into sentences", value=True
)
granularity_label = "sentences" if selected_granularity else "reports"
#preprocessing action: remove sentences with less than N words
min_words = st.sidebar.slider(
f"Remove {granularity_label} shorter than N words",
min_value=1,
max_value=20,
value=3, # default = 3 words
step=1,
help="Units (sentences or reports) with fewer words than this will be discarded "
"during preprocessing. After changing, click 'Prepare Data for This Configuration'.",
)
subsample_perc = st.sidebar.slider("Data sampling (%)", 10, 100, 100, 5)
st.sidebar.markdown("---")
# ---------------------------------------------------------------------
# Embedding model & device
# ---------------------------------------------------------------------
st.sidebar.header("Model Selection")
selected_embedding_model = st.sidebar.selectbox(
"Choose an embedding model",
(
"BAAI/bge-small-en-v1.5",
"intfloat/multilingual-e5-large-instruct",
"Qwen/Qwen3-Embedding-0.6B",
"sentence-transformers/all-mpnet-base-v2",
),
help="Unsure which model to pick? Check the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for performance maximising on Clustering and STS tasks."
)
selected_device = st.sidebar.radio(
"Processing device",
["GPU", "CPU"],
index=0,
)
# =====================================================================
# 7. Precompute filenames and pipeline triggers
# =====================================================================
def get_precomputed_filenames(csv_path, model_name, split_sentences, text_col):
base = os.path.splitext(os.path.basename(csv_path))[0]
safe_model = re.sub(r"[^a-zA-Z0-9_-]", "_", model_name)
suf = "sentences" if split_sentences else "reports"
col_suffix = ""
if text_col:
safe_col = re.sub(r"[^a-zA-Z0-9_-]", "_", text_col)
col_suffix = f"_{safe_col}"
return (
str(CACHE_DIR / f"precomputed_{base}{col_suffix}_{suf}_docs.npy"),
str(
CACHE_DIR
/ f"precomputed_{base}_{safe_model}{col_suffix}_{suf}_embeddings.npy"
),
)
DOCS_FILE, EMBEDDINGS_FILE = get_precomputed_filenames(
CSV_PATH, selected_embedding_model, selected_granularity, selected_text_column
)
# --- Cache management ---
st.sidebar.markdown("### Cache")
if st.sidebar.button(
"Clear cached files for this configuration", use_container_width=True
):
try:
for p in (DOCS_FILE, EMBEDDINGS_FILE):
if os.path.exists(p):
os.remove(p)
try:
load_precomputed_data.clear()
except Exception:
pass
try:
perform_topic_modeling.clear()
except Exception:
pass
st.success(
"Deleted cached docs/embeddings and cleared caches. Click **Prepare Data** again."
)
st.rerun()
except Exception as e:
st.error(f"Failed to delete cache files: {e}")
st.sidebar.markdown("---")
# =====================================================================
# 8. Prepare Data OR Run Analysis
# =====================================================================
if not os.path.exists(EMBEDDINGS_FILE):
st.warning(
f"No precomputed embeddings found for this configuration "
f"({granularity_label} / {selected_embedding_model} / column '{selected_text_column}')."
)
if st.button("Prepare Data for This Configuration"):
generate_and_save_embeddings(
CSV_PATH,
DOCS_FILE,
EMBEDDINGS_FILE,
selected_embedding_model,
selected_granularity,
selected_device,
text_col=selected_text_column,
min_words=min_words,
)
else:
# Load cached data
docs, embeddings = load_precomputed_data(DOCS_FILE, EMBEDDINGS_FILE)
embeddings = np.asarray(embeddings)
if embeddings.dtype == object or embeddings.ndim != 2:
try:
embeddings = np.vstack(embeddings).astype(np.float32)
except Exception:
st.error(
"Cached embeddings are invalid. Please regenerate them for this configuration."
)
st.stop()
if subsample_perc < 100:
n = int(len(docs) * (subsample_perc / 100))
idx = np.random.choice(len(docs), size=n, replace=False)
docs = [docs[i] for i in idx]
embeddings = np.asarray(embeddings)[idx, :]
st.warning(
f"Running analysis on {subsample_perc}% subsample ({len(docs)} documents)"
)
# Dataset summary
st.subheader("Dataset summary")
n_reports = count_clean_reports(CSV_PATH, selected_text_column)
unit = "sentences" if selected_granularity else "reports"
n_units = len(docs)
c1, c2, c3 = st.columns(3)
c1.metric("Reports in CSV (cleaned)", n_reports)
c2.metric(f"Units analysed ({unit})", n_units)
stats = st.session_state.get("last_data_stats")
if (
stats is not None
and stats.get("granularity") == unit
and stats.get("min_words", 0) == int(min_words or 0)
):
removed = stats["removed"]
total_before = stats["total_before"]
c3.metric("Units removed (< N words)", removed)
st.caption(
f"Min-words filter N = {int(min_words or 0)}. "
f"Started with {total_before} {unit}, kept {stats['total_after']}."
)
else:
c3.metric("Units removed (< N words)", "–")
st.caption(
"Change 'Remove units shorter than N words' and click "
"'Prepare Data for This Configuration' to update removal stats."
)
with st.expander("Preview preprocessed text (first 10 units)"):
preview_df = pd.DataFrame({"text": docs[:10]})
st.dataframe(preview_df)
# --- Parameter controls ---
st.sidebar.header("Model Parameters")
use_vectorizer = st.sidebar.checkbox("Use CountVectorizer", value=True)
with st.sidebar.expander("Vectorizer"):
ng_min = st.slider("Min N-gram", 1, 5, 1)
ng_max = st.slider("Max N-gram", 1, 5, 2)
min_df = st.slider("Min Doc Freq", 1, 50, 1)
stopwords = st.select_slider(
"Stopwords", options=[None, "english"], value=None
)
with st.sidebar.expander("UMAP"):
um_n = st.slider("n_neighbors", 2, 50, 15)
um_c = st.slider("n_components", 2, 20, 5)
um_d = st.slider("min_dist", 0.0, 1.0, 0.0)
with st.sidebar.expander("HDBSCAN"):
hs = st.slider("min_cluster_size", 5, 100, 10)
hm = st.slider("min_samples", 2, 100, 5)
with st.sidebar.expander("BERTopic"):
nr_topics = st.text_input("nr_topics", value="auto")
top_n_words = st.slider("top_n_words", 5, 25, 10, help="for a number N selected, BERTopic with fill the N most statistically significant words for that cluster")
current_config = {
"embedding_model": selected_embedding_model,
"granularity": granularity_label,
"subsample_percent": subsample_perc,
"use_vectorizer": use_vectorizer,
"vectorizer_params": {
"ngram_range": (ng_min, ng_max),
"min_df": min_df,
"stop_words": stopwords,
},
"umap_params": {
"n_neighbors": um_n,
"n_components": um_c,
"min_dist": um_d,
},
"hdbscan_params": {
"min_cluster_size": hs,
"min_samples": hm,
},
"bt_params": {
"nr_topics": nr_topics,
"top_n_words": top_n_words,
},
"text_column": selected_text_column,
}
run_button = st.sidebar.button("Run Analysis", type="primary")
# =================================================================
# 9. Visualization & History Tabs
# =================================================================
main_tab, history_tab = st.tabs(["Main Results", "Run History"])
def load_history():
path = HISTORY_FILE
if not os.path.exists(path):
return []
try:
data = json.load(open(path))
except Exception:
return []
for e in data:
if "outlier_pct" not in e and "outlier_perc" in e:
e["outlier_pct"] = e.pop("outlier_perc")
return data
def save_history(h):
json.dump(h, open(HISTORY_FILE, "w"), indent=2)
if "history" not in st.session_state:
st.session_state.history = load_history()
if run_button:
if not isinstance(embeddings, np.ndarray):
embeddings = np.asarray(embeddings)
if embeddings.dtype == object or embeddings.ndim != 2:
try:
embeddings = np.vstack(embeddings).astype(np.float32)
except Exception:
st.error(
"Cached embeddings are invalid (object/ragged). Click **Prepare Data** to regenerate."
)
st.stop()
if embeddings.shape[0] != len(docs):
st.error(
f"len(docs)={len(docs)} but embeddings.shape[0]={embeddings.shape[0]}.\n"
"Likely stale cache (e.g., switched sentences↔reports or model). "
"Use the **Clear cache** button below and regenerate."
)
st.stop()
with st.spinner("Performing topic modeling..."):
model, reduced, labels, n_topics, outlier_pct = perform_topic_modeling(
docs, embeddings, get_config_hash(current_config)
)
st.session_state.latest_results = (model, reduced, labels)
### ADD FOR LLM (START)
st.session_state.latest_config_hash = get_config_hash(current_config)
st.session_state.latest_config = current_config
### ADD FOR LLM (END)
entry = {
"timestamp": str(pd.Timestamp.now()),
"config": current_config,
"num_topics": n_topics,
"outlier_pct": f"{outlier_pct:.2f}%",
"llm_labels": [
name
for name in model.get_topic_info().Name.values
if ("Unlabelled" not in name and "outlier" not in name)
],
}
st.session_state.history.insert(0, entry)
save_history(st.session_state.history)
st.rerun()
# --- MAIN TAB ---
with main_tab:
if "latest_results" in st.session_state:
tm, reduced, labs = st.session_state.latest_results
#USE NEW LABELS
# ##### ADDED FOR LLM (START)
# st.subheader("LLM topic labelling (via Hugging Face API)")
# model_id = st.text_input(
# "HF model id for labelling",
# value="meta-llama/Meta-Llama-3-8B-Instruct",
# )
# prompt_template = st.text_area(
# "Prompt template",
# value=YOUR_PROMPT_STRING, # define it once (see below)
# height=220,
# )
# max_topics = st.slider("Max topics to label", 5, 80, 40)
# reps_per_topic = st.slider("Representative excerpts per topic", 2, 15, 8)
# do_label = st.button("Generate LLM labels (API)")
# if do_label:
# try:
# llm_names = generate_labels_via_api(
# tm,
# model_id=model_id,
# prompt_template=prompt_template,
# max_topics=max_topics,
# reps_per_topic=reps_per_topic,
# )
# st.session_state.llm_names = llm_names
# st.success(f"Generated {len(llm_names)} labels.")
# except Exception as e:
# st.error(str(e))
# # Merge labels (LLM overrides keyword names)
# name_map = tm.get_topic_info().set_index("Topic")["Name"].to_dict()
# llm_names = st.session_state.get("llm_names", {})
# final_name_map = {**name_map, **llm_names}
# # rebuild per-document labels for plotting
# labs = [final_name_map.get(t, "Unlabelled") for t in tm.topics_]
# ##### ADDED FOR LLM (END)
##### ADDED FOR LLM (START)
st.subheader("LLM topic labelling (via Hugging Face API)")
model_id = st.text_input(
"HF model id for labelling",
value="meta-llama/Meta-Llama-3-8B-Instruct",
)
with st.expander("Show LLM configuration and prompts"):
# What we *request*
st.markdown(f"**HF model id (requested):** `{model_id}`")
# What was used on the last run, if available
requested_last = st.session_state.get("hf_last_model_param")
provider_model = st.session_state.get("hf_last_provider_model")
if requested_last:
st.markdown(f"**Last run – requested model id:** `{requested_last}`")
if provider_model:
st.markdown(f"**Last run – provider model (returned):** `{provider_model}`")
else:
st.caption("Run LLM labelling once to see the provider-returned model id.")
st.markdown("**System prompt:**")
st.code(SYSTEM_PROMPT, language="markdown")
st.markdown("**User prompt template:**")
st.code(USER_TEMPLATE, language="markdown")
example_prompt = st.session_state.get("hf_last_example_prompt")
if example_prompt:
st.markdown("**Example full prompt for one topic (last run):**")
st.code(example_prompt, language="markdown")
else:
st.caption("No example prompt stored yet – run LLM labelling to populate this.")
cA, cB, cC = st.columns([1, 1, 2])
with cA:
max_topics = st.slider("Max topics", 5, 120, 40, 5)
# max_topics = cA.slider("Max topics", 5, 120, 40, 5)
with cB:
max_docs_per_topic = st.slider(
"Docs per topic",
min_value=2,
max_value=40,
value=8,
step=1,
help="How many representative sentences per topic to show the LLM. Try keeping low value to not spend all tokens",
key="llm_docs_per_topic",
)
force = st.checkbox(
"Force regenerate",
value=False,
key="llm_force_regenerate",
)
if cC.button("Generate LLM labels (API)", use_container_width=True):
try:
cfg_hash = st.session_state.get("latest_config_hash", "nohash")
llm_names = generate_labels_via_chat_completion(
topic_model=tm,
docs=docs,
config_hash=cfg_hash,
model_id=model_id,
max_topics=max_topics,
max_docs_per_topic=max_docs_per_topic,
force=force,
)
st.session_state.llm_names = llm_names
st.success(f"Generated {len(llm_names)} labels.")
st.rerun()
except Exception as e:
st.error(f"LLM labelling failed: {e}")
# Approximate HF usage for *this* Streamlit session (local estimate only)
hf_tokens_total = st.session_state.get("hf_tokens_total", 0)
if hf_tokens_total:
approx_cost = hf_tokens_total / 1_000_000 * HF_APPROX_PRICE_PER_MTOKENS_USD
st.caption(
f"Approx. HF LLM usage this session: ~{hf_tokens_total:,} tokens "
f"(~${approx_cost:.4f} at "
f"${HF_APPROX_PRICE_PER_MTOKENS_USD}/M tokens, "
"based on Novita Llama 3 8B pricing). "
)
# Apply labels (LLM overrides keyword names)
default_map = tm.get_topic_info().set_index("Topic")["Name"].to_dict()
api_map = st.session_state.get("llm_names", {}) or {}
llm_names = {**default_map, **api_map}
# FIX: Force outliers (Topic -1) to be "Unlabelled" so we can hide them
labs = []
for t in tm.topics_:
if t == -1:
labs.append("Unlabelled")
else:
labs.append(llm_names.get(t, "Unlabelled"))
# VISUALISATION
st.subheader("Experiential Topics Visualisation")
# Build a nice title from the dataset name
dataset_title = ds_input.strip() or DATASET_DIR
plot_title = f"{dataset_title}: MOSAIC's Experiential Topic Map"
# We pass 'noise_label' and 'noise_color' to grey out the outliers
fig, _ = datamapplot.create_plot(
reduced,
labs,
noise_label="Unlabelled", # Tells datamapplot: "Do not put a text label on this group"
noise_color="#CCCCCC", # Sets the points to a light Grey
label_font_size=11, # Optional: Adjust font size
arrowprops={"arrowstyle": "-", "color": "#333333"} # Optional: darker, simpler arrows
)
fig.suptitle(plot_title, fontsize=16, y=0.99)
st.pyplot(fig)
# --- Download / save visualisation ---
# Prepare high-res PNG bytes
buf = BytesIO()
fig.savefig(buf, format="png", dpi=300, bbox_inches="tight")
png_bytes = buf.getvalue()
# Reuse base / gran for a nice filename later (they’re defined below as well)
base = os.path.splitext(os.path.basename(CSV_PATH))[0]
gran = "sentences" if selected_granularity else "reports"
png_name = f"topics_{base}_{gran}_plot.png"
dl_col, save_col = st.columns(2)
with dl_col:
st.download_button(
"Download visualisation as PNG",
data=png_bytes,
file_name=png_name,
mime="image/png",
use_container_width=True,
)
with save_col:
if st.button("Save plot to eval/", use_container_width=True):
try:
plot_path = (EVAL_DIR / png_name).resolve()
fig.savefig(plot_path, format="png", dpi=300, bbox_inches="tight")
st.success(f"Saved plot → {plot_path}")
except Exception as e:
st.error(f"Failed to save plot: {e}")
st.subheader("Topic Info")
st.dataframe(tm.get_topic_info())
st.subheader("Export results (one row per topic)")
model_docs = getattr(tm, "docs_", None)
if model_docs is not None and len(docs) != len(model_docs):
st.caption(
"Note: export uses the original documents from the topic-model run. "
"The current dataset size is different (e.g. sampling/splitting changed), "
"so you may want to re-run topic modelling before exporting."
)
doc_info = tm.get_document_info(docs)[["Document", "Topic"]]
include_outliers = st.checkbox(
"Include outlier topic (-1)", value=False
)
if not include_outliers:
doc_info = doc_info[doc_info["Topic"] != -1]
grouped = (
doc_info.groupby("Topic")["Document"]
.apply(list)
.reset_index(name="texts")
)
grouped["topic_name"] = grouped["Topic"].map(llm_names).fillna(
"Unlabelled"
)
export_topics = (
grouped.rename(columns={"Topic": "topic_id"})[
["topic_id", "topic_name", "texts"]
]
.sort_values("topic_id")
.reset_index(drop=True)
)
SEP = "\n"
export_csv = export_topics.copy()
export_csv["texts"] = export_csv["texts"].apply(
lambda lst: SEP.join(map(str, lst))
)
base = os.path.splitext(os.path.basename(CSV_PATH))[0]
gran = "sentences" if selected_granularity else "reports"
csv_name = f"topics_{base}_{gran}.csv"
jsonl_name = f"topics_{base}_{gran}.jsonl"
csv_path = (EVAL_DIR / csv_name).resolve()
jsonl_path = (EVAL_DIR / jsonl_name).resolve()
cL, cC, cR = st.columns(3)
with cL:
if st.button("Save CSV to eval/", use_container_width=True):
try:
export_csv.to_csv(csv_path, index=False)
st.success(f"Saved CSV → {csv_path}")
except Exception as e:
st.error(f"Failed to save CSV: {e}")
with cC:
if st.button("Save JSONL to eval/", use_container_width=True):
try:
with open(jsonl_path, "w", encoding="utf-8") as f:
for _, row in export_topics.iterrows():
rec = {
"topic_id": int(row["topic_id"]),
"topic_name": row["topic_name"],
"texts": list(map(str, row["texts"])),
}
f.write(
json.dumps(rec, ensure_ascii=False) + "\n"
)
st.success(f"Saved JSONL → {jsonl_path}")
except Exception as e:
st.error(f"Failed to save JSONL: {e}")
with cR:
# Create a Long Format DataFrame (One row per sentence)
# This ensures NO text is hidden due to Excel cell limits
long_format_df = doc_info.copy()
long_format_df["Topic Name"] = long_format_df["Topic"].map(llm_names).fillna("Unlabelled")
# Reorder columns for clarity
long_format_df = long_format_df[["Topic", "Topic Name", "Document"]]
# Define filename
long_csv_name = f"all_sentences_{base}_{gran}.csv"
st.download_button(
"Download All Sentences (Long Format)",
data=long_format_df.to_csv(index=False).encode("utf-8-sig"),
file_name=long_csv_name,
mime="text/csv",
use_container_width=True,
help="Download a CSV with one row per sentence. Best for checking exactly which sentences belong to which topic."
)
# st.download_button(
# "Download CSV",
# data=export_csv.to_csv(index=False).encode("utf-8-sig"),
# file_name=csv_name,
# mime="text/csv",
# use_container_width=True,
# )
# st.caption("Preview (one row per topic)")
st.dataframe(export_csv)
else:
st.info("Click 'Run Analysis' to begin.")
# --- HISTORY TAB ---
with history_tab:
st.subheader("Run History")
if not st.session_state.history:
st.info("No runs yet.")
else:
for i, entry in enumerate(st.session_state.history):
with st.expander(f"Run {i+1} — {entry['timestamp']}"):
st.write(f"**Topics:** {entry['num_topics']}")
st.write(
f"**Outliers:** {entry.get('outlier_pct', entry.get('outlier_perc', 'N/A'))}"
)
st.write("**Topic Labels (default keywords):**")
st.write(entry["llm_labels"])
with st.expander("Show full configuration"):
st.json(entry["config"])
|