Spaces:
Running
Running
File size: 34,475 Bytes
d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a d2492da 6b6764a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
"""
File: app_with_LLM.py
Description: Streamlit app for advanced topic modeling on Innerspeech dataset
with BERTopic, UMAP, HDBSCAN.
**PRO VERSION: LLM (LlamaCPP) Enabled**
Last Modified: 08/12/2025
"""
# =====================================================================
# Imports
# =====================================================================
from pathlib import Path
import sys
import streamlit as st
import pandas as pd
import numpy as np
import re
import os
import nltk
import json
# --- LLM Specific Imports (Added for Pro Version) ---
from llama_cpp import Llama
from bertopic.representation import LlamaCPP
from huggingface_hub import hf_hub_download
# ----------------------------------------------------
# BERTopic stack
from bertopic import BERTopic
from sentence_transformers import SentenceTransformer
# Clustering/dimensionality reduction
from sklearn.feature_extraction.text import CountVectorizer
from umap import UMAP
from hdbscan import HDBSCAN
# Visualisation
import datamapplot
import matplotlib.pyplot as plt
# =====================================================================
# NLTK setup
# =====================================================================
NLTK_DATA_DIR = "/usr/local/share/nltk_data"
if NLTK_DATA_DIR not in nltk.data.path:
nltk.data.path.append(NLTK_DATA_DIR)
# Try to ensure both punkt_tab (new NLTK) and punkt (old NLTK) are available
for resource in ("punkt_tab", "punkt"):
try:
nltk.data.find(f"tokenizers/{resource}")
except LookupError:
try:
nltk.download(resource, download_dir=NLTK_DATA_DIR)
except Exception as e:
print(f"Could not download NLTK resource {resource}: {e}")
# =====================================================================
# Path utils (MOSAIC or fallback)
# =====================================================================
try:
from mosaic.path_utils import CFG, raw_path, proc_path, eval_path, project_root # type: ignore
except Exception:
# Minimal stand-in so the app works anywhere (Streamlit Cloud, local without MOSAIC, etc.)
def _env(key: str, default: str) -> Path:
val = os.getenv(key, default)
return Path(val).expanduser().resolve()
# Defaults: app-local data/ eval/ that are safe on Cloud
_DATA_ROOT = _env("MOSAIC_DATA", str(Path(__file__).parent / "data"))
_BOX_ROOT = _env("MOSAIC_BOX", str(Path(__file__).parent / "data" / "raw"))
_EVAL_ROOT = _env("MOSAIC_EVAL", str(Path(__file__).parent / "eval"))
CFG = {
"data_root": str(_DATA_ROOT),
"box_root": str(_BOX_ROOT),
"eval_root": str(_EVAL_ROOT),
}
def project_root() -> Path:
return Path(__file__).resolve().parent
def raw_path(*parts: str) -> Path:
return _BOX_ROOT.joinpath(*parts)
def proc_path(*parts: str) -> Path:
return _DATA_ROOT.joinpath(*parts)
def eval_path(*parts: str) -> Path:
return _EVAL_ROOT.joinpath(*parts)
# =====================================================================
# 0. Constants & Helper Functions
# =====================================================================
def _slugify(s: str) -> str:
s = s.strip()
s = re.sub(r"[^A-Za-z0-9._-]+", "_", s)
return s or "DATASET"
def _cleanup_old_cache(current_slug: str):
"""Deletes precomputed .npy files that do not match the current dataset slug."""
if not CACHE_DIR.exists():
return
removed_count = 0
# Iterate over all precomputed files
for p in CACHE_DIR.glob("precomputed_*.npy"):
# If the file belongs to a different dataset (doesn't contain the new slug)
if current_slug not in p.name:
try:
p.unlink() # Delete file
removed_count += 1
except Exception as e:
print(f"Error deleting {p.name}: {e}")
if removed_count > 0:
print(f"Auto-cleanup: Removed {removed_count} old cache files.")
ACCEPTABLE_TEXT_COLUMNS = [
"reflection_answer_english",
"reflection_answer",
"text",
"report",
]
def _pick_text_column(df: pd.DataFrame) -> str | None:
"""Return the first matching *preferred* text column name if present."""
for col in ACCEPTABLE_TEXT_COLUMNS:
if col in df.columns:
return col
return None
def _list_text_columns(df: pd.DataFrame) -> list[str]:
"""
Return all columns; we’ll cast the chosen one to string later.
This makes the selector work with any column name / dtype.
"""
return list(df.columns)
def _set_from_env_or_secrets(key: str):
"""Allow hosting: value can come from environment or from Streamlit secrets."""
if os.getenv(key):
return
try:
val = st.secrets.get(key, None)
except Exception:
val = None
if val:
os.environ[key] = str(val)
# Enable both MOSAIC_DATA and MOSAIC_BOX automatically
for _k in ("MOSAIC_DATA", "MOSAIC_BOX"):
_set_from_env_or_secrets(_k)
@st.cache_data
def count_clean_reports(csv_path: str, text_col: str | None = None) -> int:
"""Count non-empty reports in the chosen text column."""
df = pd.read_csv(csv_path)
if text_col is not None and text_col in df.columns:
col = text_col
else:
col = _pick_text_column(df)
if col is None:
return 0
if col != "reflection_answer_english":
df = df.rename(columns={col: "reflection_answer_english"})
df.dropna(subset=["reflection_answer_english"], inplace=True)
df["reflection_answer_english"] = df["reflection_answer_english"].astype(str)
df = df[df["reflection_answer_english"].str.strip() != ""]
return len(df)
# =====================================================================
# 1. Streamlit app setup
# =====================================================================
st.set_page_config(page_title="MOSAIC Dashboard (Pro)", layout="wide")
st.title(
"Mapping of Subjective Accounts into Interpreted Clusters (MOSAIC): "
"Topic Modelling Dashboard (Pro Version)"
)
st.markdown(
"""
_If you use this tool in your research, please cite the following paper:_\n
**Beauté, R., et al. (2025).** **Mapping of Subjective Accounts into Interpreted Clusters (MOSAIC): Topic Modelling and LLM applied to Stroboscopic Phenomenology** https://arxiv.org/abs/2502.18318
"""
)
# =====================================================================
# 2. Dataset paths (using MOSAIC structure)
# =====================================================================
ds_input = st.sidebar.text_input(
"Project/Dataset name", value="MOSAIC", key="dataset_name_input"
)
DATASET_DIR = _slugify(ds_input).upper()
RAW_DIR = raw_path(DATASET_DIR)
PROC_DIR = proc_path(DATASET_DIR, "preprocessed")
EVAL_DIR = eval_path(DATASET_DIR)
CACHE_DIR = PROC_DIR / "cache"
PROC_DIR.mkdir(parents=True, exist_ok=True)
CACHE_DIR.mkdir(parents=True, exist_ok=True)
EVAL_DIR.mkdir(parents=True, exist_ok=True)
with st.sidebar.expander("About the dataset name", expanded=False):
st.markdown(
f"""
- The name above is converted to **UPPER CASE** and used as a folder name.
- If the folder doesn’t exist, it will be **created**:
- Preprocessed CSVs: `{PROC_DIR}`
- Exports (results): `{EVAL_DIR}`
- If you choose **Use preprocessed CSV on server**, I’ll list CSVs in `{PROC_DIR}`.
- If you **upload** a CSV, it will be saved to `{PROC_DIR}/uploaded.csv`.
""".strip()
)
def _list_server_csvs(proc_dir: Path) -> list[str]:
return [str(p) for p in sorted(proc_dir.glob("*.csv"))]
DATASETS = None # keep name for clarity; we’ll fill it when rendering the sidebar
HISTORY_FILE = str(PROC_DIR / "run_history.json")
# =====================================================================
# 3. Embedding & LLM loaders
# =====================================================================
@st.cache_resource
def load_embedding_model(model_name):
st.info(f"Loading embedding model '{model_name}'...")
return SentenceTransformer(model_name)
# --- Added for Pro Version ---
@st.cache_resource
def load_llm_model():
"""Loads LlamaCPP quantised model for topic labeling."""
st.info("Loading Llama-3-8B-Instruct (Quantized)... This may take a moment.")
model_repo = "NousResearch/Meta-Llama-3-8B-Instruct-GGUF"
model_file = "Meta-Llama-3-8B-Instruct-Q4_K_M.gguf"
try:
model_path = hf_hub_download(repo_id=model_repo, filename=model_file)
return Llama(model_path=model_path, n_gpu_layers=-1, n_ctx=8192, stop=["Q:", "\n"], verbose=False)
except Exception as e:
st.error(f"Failed to load LLM: {e}")
return None
# -----------------------------
@st.cache_data
def load_precomputed_data(docs_file, embeddings_file):
docs = np.load(docs_file, allow_pickle=True).tolist()
emb = np.load(embeddings_file, allow_pickle=True)
return docs, emb
# =====================================================================
# 4. Topic modeling function
# =====================================================================
def get_config_hash(cfg):
return json.dumps(cfg, sort_keys=True)
@st.cache_data
def perform_topic_modeling(_docs, _embeddings, config_hash):
"""Fit BERTopic using cached result."""
_docs = list(_docs)
_embeddings = np.asarray(_embeddings)
if _embeddings.dtype == object or _embeddings.ndim != 2:
try:
_embeddings = np.vstack(_embeddings)
except Exception:
st.error(
f"Embeddings are invalid (dtype={_embeddings.dtype}, ndim={_embeddings.ndim}). "
"Please click **Prepare Data** to regenerate."
)
st.stop()
_embeddings = np.ascontiguousarray(_embeddings, dtype=np.float32)
if _embeddings.shape[0] != len(_docs):
st.error(
f"Mismatch between docs and embeddings: len(docs)={len(_docs)} vs "
f"embeddings.shape[0]={_embeddings.shape[0]}. "
"Delete the cached files for this configuration and regenerate."
)
st.stop()
config = json.loads(config_hash)
if "ngram_range" in config["vectorizer_params"]:
config["vectorizer_params"]["ngram_range"] = tuple(
config["vectorizer_params"]["ngram_range"]
)
# --- LLM Representation Setup (Added for Pro Version) ---
llm = load_llm_model()
rep_model = None
if llm:
prompt = """Q:
You are an expert in micro-phenomenology. The following documents are reflections from participants about their experience.
I have a topic that contains the following documents:
[DOCUMENTS]
The topic is described by the following keywords: '[KEYWORDS]'.
Based on the above information, give a short, informative label (5–10 words).
A:"""
rep_model = {
"LLM": LlamaCPP(llm, prompt=prompt, nr_docs=25, doc_length=300, tokenizer="whitespace")
}
# -----------------------------------------------------
umap_model = UMAP(random_state=42, metric="cosine", **config["umap_params"])
hdbscan_model = HDBSCAN(
metric="euclidean", prediction_data=True, **config["hdbscan_params"]
)
vectorizer_model = (
CountVectorizer(**config["vectorizer_params"])
if config["use_vectorizer"]
else None
)
nr_topics_val = (
None
if config["bt_params"]["nr_topics"] == "auto"
else int(config["bt_params"]["nr_topics"])
)
topic_model = BERTopic(
umap_model=umap_model,
hdbscan_model=hdbscan_model,
vectorizer_model=vectorizer_model,
representation_model=rep_model, # <-- Pass LLM representation here
top_n_words=config["bt_params"]["top_n_words"],
nr_topics=nr_topics_val,
verbose=False,
)
topics, _ = topic_model.fit_transform(_docs, _embeddings)
info = topic_model.get_topic_info()
outlier_pct = 0
if -1 in info.Topic.values:
outlier_pct = (
info.Count[info.Topic == -1].iloc[0] / info.Count.sum()
) * 100
# --- Extract Labels (Prefer LLM if available) ---
if rep_model and "LLM" in topic_model.get_topics(full=True):
raw_labels = [label[0][0] for label in topic_model.get_topics(full=True)["LLM"].values()]
cleaned_labels = [lbl.split(":")[-1].strip().strip('"').strip(".") for lbl in raw_labels]
final_labels = [lbl if lbl else "Unlabelled" for lbl in cleaned_labels]
all_labels = [final_labels[topic + topic_model._outliers] if topic != -1 else "Unlabelled" for topic in topics]
else:
# Fallback for when LLM fails or is not present
topic_info = topic_model.get_topic_info()
name_map = topic_info.set_index("Topic")["Name"].to_dict()
all_labels = [name_map[topic] for topic in topics]
# -----------------------------------------------
reduced = UMAP(
n_neighbors=15,
n_components=2,
min_dist=0.0,
metric="cosine",
random_state=42,
).fit_transform(_embeddings)
return topic_model, reduced, all_labels, len(info) - 1, outlier_pct
# =====================================================================
# 5. CSV → documents → embeddings pipeline
# =====================================================================
def generate_and_save_embeddings(
csv_path,
docs_file,
emb_file,
selected_embedding_model,
split_sentences,
device,
text_col=None,
):
# ---------------------
# Load & clean CSV
# ---------------------
st.info(f"Reading and preparing CSV: {csv_path}")
df = pd.read_csv(csv_path)
if text_col is not None and text_col in df.columns:
col = text_col
else:
col = _pick_text_column(df)
if col is None:
st.error("CSV must contain at least one text column.")
return
if col != "reflection_answer_english":
df = df.rename(columns={col: "reflection_answer_english"})
df.dropna(subset=["reflection_answer_english"], inplace=True)
df["reflection_answer_english"] = df["reflection_answer_english"].astype(str)
df = df[df["reflection_answer_english"].str.strip() != ""]
reports = df["reflection_answer_english"].tolist()
# ---------------------
# Sentence / report granularity
# ---------------------
if split_sentences:
try:
sentences = [s for r in reports for s in nltk.sent_tokenize(r)]
docs = [s for s in sentences if len(s.split()) > 2]
except LookupError as e:
st.error(f"NLTK tokenizer data not found: {e}")
st.stop()
else:
docs = reports
np.save(docs_file, np.array(docs, dtype=object))
st.success(f"Prepared {len(docs)} documents")
# ---------------------
# Embeddings
# ---------------------
st.info(
f"Encoding {len(docs)} documents with {selected_embedding_model} on {device}"
)
model = load_embedding_model(selected_embedding_model)
encode_device = None
batch_size = 32
if device == "CPU":
encode_device = "cpu"
batch_size = 64
embeddings = model.encode(
docs,
show_progress_bar=True,
batch_size=batch_size,
device=encode_device,
convert_to_numpy=True,
)
embeddings = np.asarray(embeddings, dtype=np.float32)
np.save(emb_file, embeddings)
st.success("Embedding generation complete!")
st.balloons()
st.rerun()
# =====================================================================
# 6. Sidebar — dataset, upload, parameters
# =====================================================================
st.sidebar.header("Data Input Method")
source = st.sidebar.radio(
"Choose data source",
("Use preprocessed CSV on server", "Upload my own CSV"),
index=0,
key="data_source",
)
uploaded_csv_path = None
CSV_PATH = None # will be set in the chosen branch
if source == "Use preprocessed CSV on server":
available = _list_server_csvs(PROC_DIR)
if not available:
st.info(
f"No CSVs found in {PROC_DIR}. Switch to 'Upload my own CSV' or change the dataset name."
)
st.stop()
selected_csv = st.sidebar.selectbox(
"Choose a preprocessed CSV", available, key="server_csv_select"
)
CSV_PATH = selected_csv
else:
up = st.sidebar.file_uploader(
"Upload a CSV", type=["csv"], key="upload_csv"
)
st.sidebar.caption(
"Your CSV should have **one row per report** and at least one text column "
"(for example `reflection_answer_english`, `reflection_answer`, `text`, `report`, "
"or any other column containing free text). "
"Other columns (ID, condition, etc.) are allowed. "
"After upload, you’ll be able to choose which text column to analyse."
)
if up is not None:
# List of encodings to try:
# 1. utf-8 (Standard)
# 2. mac_roman (Fixes the Õ and É issues from Mac Excel)
# 3. cp1252 (Standard Windows Excel)
encodings_to_try = ['utf-8', 'mac_roman', 'cp1252', 'ISO-8859-1']
tmp_df = None
success_encoding = None
for encoding in encodings_to_try:
try:
up.seek(0) # Always reset to start of file before trying
tmp_df = pd.read_csv(up, encoding=encoding)
success_encoding = encoding
break # If we get here, it worked, so stop the loop
except UnicodeDecodeError:
continue # If it fails, try the next one
if tmp_df is None:
st.error("Could not decode file. Please save your CSV as 'CSV UTF-8' in Excel.")
st.stop()
if tmp_df.empty:
st.error("Uploaded CSV is empty.")
st.stop()
# Optional: Print which encoding worked to the logs (for your info)
print(f"Successfully loaded CSV using {success_encoding} encoding.")
# FIX: Use the original filename to avoid cache collisions
# We sanitize the name to be safe for file systems
safe_filename = _slugify(os.path.splitext(up.name)[0])
_cleanup_old_cache(safe_filename)
uploaded_csv_path = str((PROC_DIR / f"{safe_filename}.csv").resolve())
tmp_df.to_csv(uploaded_csv_path, index=False)
st.success(f"Uploaded CSV saved to {uploaded_csv_path}")
CSV_PATH = uploaded_csv_path
else:
st.info("Upload a CSV to continue.")
st.stop()
if CSV_PATH is None:
st.stop()
# ---------------------------------------------------------------------
# Text column selection
# ---------------------------------------------------------------------
@st.cache_data
def get_text_columns(csv_path: str) -> list[str]:
df_sample = pd.read_csv(csv_path, nrows=2000)
return _list_text_columns(df_sample)
text_columns = get_text_columns(CSV_PATH)
if not text_columns:
st.error(
"No columns found in this CSV. At least one column is required."
)
st.stop()
text_columns = get_text_columns(CSV_PATH)
if not text_columns:
st.error(
"No text-like columns found in this CSV. At least one column must contain text."
)
st.stop()
# Try to pick a nice default (one of the MOSAIC-ish names) if present
try:
df_sample = pd.read_csv(CSV_PATH, nrows=2000)
preferred = _pick_text_column(df_sample)
except Exception:
preferred = None
if preferred in text_columns:
default_idx = text_columns.index(preferred)
else:
default_idx = 0
selected_text_column = st.sidebar.selectbox(
"Text column to analyse",
text_columns,
index=default_idx,
key="text_column_select",
)
# ---------------------------------------------------------------------
# Data granularity & subsampling
# ---------------------------------------------------------------------
st.sidebar.subheader("Data Granularity & Subsampling")
selected_granularity = st.sidebar.checkbox(
"Split reports into sentences", value=True
)
granularity_label = "sentences" if selected_granularity else "reports"
subsample_perc = st.sidebar.slider("Data sampling (%)", 10, 100, 100, 5)
st.sidebar.markdown("---")
# ---------------------------------------------------------------------
# Embedding model & device
# ---------------------------------------------------------------------
st.sidebar.header("Model Selection")
selected_embedding_model = st.sidebar.selectbox(
"Choose an embedding model",
(
"BAAI/bge-small-en-v1.5",
"intfloat/multilingual-e5-large-instruct",
"Qwen/Qwen3-Embedding-0.6B",
"sentence-transformers/all-mpnet-base-v2",
),
)
selected_device = st.sidebar.radio(
"Processing device",
["GPU (MPS)", "CPU"],
index=0,
)
# =====================================================================
# 7. Precompute filenames and pipeline triggers
# =====================================================================
def get_precomputed_filenames(csv_path, model_name, split_sentences, text_col):
base = os.path.splitext(os.path.basename(csv_path))[0]
safe_model = re.sub(r"[^a-zA-Z0-9_-]", "_", model_name)
suf = "sentences" if split_sentences else "reports"
col_suffix = ""
if text_col:
safe_col = re.sub(r"[^a-zA-Z0-9_-]", "_", text_col)
col_suffix = f"_{safe_col}"
return (
str(CACHE_DIR / f"precomputed_{base}{col_suffix}_{suf}_docs.npy"),
str(
CACHE_DIR
/ f"precomputed_{base}_{safe_model}{col_suffix}_{suf}_embeddings.npy"
),
)
DOCS_FILE, EMBEDDINGS_FILE = get_precomputed_filenames(
CSV_PATH, selected_embedding_model, selected_granularity, selected_text_column
)
# --- Cache management ---
st.sidebar.markdown("### Cache")
if st.sidebar.button(
"Clear cached files for this configuration", use_container_width=True
):
try:
for p in (DOCS_FILE, EMBEDDINGS_FILE):
if os.path.exists(p):
os.remove(p)
try:
load_precomputed_data.clear()
except Exception:
pass
try:
perform_topic_modeling.clear()
except Exception:
pass
st.success(
"Deleted cached docs/embeddings and cleared caches. Click **Prepare Data** again."
)
st.rerun()
except Exception as e:
st.error(f"Failed to delete cache files: {e}")
st.sidebar.markdown("---")
# =====================================================================
# 8. Prepare Data OR Run Analysis
# =====================================================================
if not os.path.exists(EMBEDDINGS_FILE):
st.warning(
f"No precomputed embeddings found for this configuration "
f"({granularity_label} / {selected_embedding_model} / column '{selected_text_column}')."
)
if st.button("Prepare Data for This Configuration"):
generate_and_save_embeddings(
CSV_PATH,
DOCS_FILE,
EMBEDDINGS_FILE,
selected_embedding_model,
selected_granularity,
selected_device,
text_col=selected_text_column,
)
else:
# Load cached data
docs, embeddings = load_precomputed_data(DOCS_FILE, EMBEDDINGS_FILE)
embeddings = np.asarray(embeddings)
if embeddings.dtype == object or embeddings.ndim != 2:
try:
embeddings = np.vstack(embeddings).astype(np.float32)
except Exception:
st.error(
"Cached embeddings are invalid. Please regenerate them for this configuration."
)
st.stop()
if subsample_perc < 100:
n = int(len(docs) * (subsample_perc / 100))
idx = np.random.choice(len(docs), size=n, replace=False)
docs = [docs[i] for i in idx]
embeddings = np.asarray(embeddings)[idx, :]
st.warning(
f"Running analysis on {subsample_perc}% subsample ({len(docs)} documents)"
)
# Dataset summary
st.subheader("Dataset summary")
n_reports = count_clean_reports(CSV_PATH, selected_text_column)
unit = "sentences" if selected_granularity else "reports"
n_units = len(docs)
c1, c2 = st.columns(2)
c1.metric("Reports in CSV (cleaned)", n_reports)
c2.metric(f"Units analysed ({unit})", n_units)
# --- Parameter controls ---
st.sidebar.header("Model Parameters")
use_vectorizer = st.sidebar.checkbox("Use CountVectorizer", value=True)
with st.sidebar.expander("Vectorizer"):
ng_min = st.slider("Min N-gram", 1, 5, 1)
ng_max = st.slider("Max N-gram", 1, 5, 2)
min_df = st.slider("Min Doc Freq", 1, 50, 1)
stopwords = st.select_slider(
"Stopwords", options=[None, "english"], value=None
)
with st.sidebar.expander("UMAP"):
um_n = st.slider("n_neighbors", 2, 50, 15)
um_c = st.slider("n_components", 2, 20, 5)
um_d = st.slider("min_dist", 0.0, 1.0, 0.0)
with st.sidebar.expander("HDBSCAN"):
hs = st.slider("min_cluster_size", 5, 100, 10)
hm = st.slider("min_samples", 2, 100, 5)
with st.sidebar.expander("BERTopic"):
nr_topics = st.text_input("nr_topics", value="auto")
top_n_words = st.slider("top_n_words", 5, 25, 10)
current_config = {
"embedding_model": selected_embedding_model,
"granularity": granularity_label,
"subsample_percent": subsample_perc,
"use_vectorizer": use_vectorizer,
"vectorizer_params": {
"ngram_range": (ng_min, ng_max),
"min_df": min_df,
"stop_words": stopwords,
},
"umap_params": {
"n_neighbors": um_n,
"n_components": um_c,
"min_dist": um_d,
},
"hdbscan_params": {
"min_cluster_size": hs,
"min_samples": hm,
},
"bt_params": {
"nr_topics": nr_topics,
"top_n_words": top_n_words,
},
"text_column": selected_text_column,
}
run_button = st.sidebar.button("Run Analysis", type="primary")
# =================================================================
# 9. Visualization & History Tabs
# =================================================================
main_tab, history_tab = st.tabs(["Main Results", "Run History"])
def load_history():
path = HISTORY_FILE
if not os.path.exists(path):
return []
try:
data = json.load(open(path))
except Exception:
return []
for e in data:
if "outlier_pct" not in e and "outlier_perc" in e:
e["outlier_pct"] = e.pop("outlier_perc")
return data
def save_history(h):
json.dump(h, open(HISTORY_FILE, "w"), indent=2)
if "history" not in st.session_state:
st.session_state.history = load_history()
if run_button:
if not isinstance(embeddings, np.ndarray):
embeddings = np.asarray(embeddings)
if embeddings.dtype == object or embeddings.ndim != 2:
try:
embeddings = np.vstack(embeddings).astype(np.float32)
except Exception:
st.error(
"Cached embeddings are invalid (object/ragged). Click **Prepare Data** to regenerate."
)
st.stop()
if embeddings.shape[0] != len(docs):
st.error(
f"len(docs)={len(docs)} but embeddings.shape[0]={embeddings.shape[0]}.\n"
"Likely stale cache (e.g., switched sentences↔reports or model). "
"Use the **Clear cache** button below and regenerate."
)
st.stop()
with st.spinner("Performing topic modeling..."):
model, reduced, labels, n_topics, outlier_pct = perform_topic_modeling(
docs, embeddings, get_config_hash(current_config)
)
st.session_state.latest_results = (model, reduced, labels)
entry = {
"timestamp": str(pd.Timestamp.now()),
"config": current_config,
"num_topics": n_topics,
"outlier_pct": f"{outlier_pct:.2f}%",
"llm_labels": [
name
for name in model.get_topic_info().Name.values
if ("Unlabelled" not in name and "outlier" not in name)
],
}
st.session_state.history.insert(0, entry)
save_history(st.session_state.history)
st.rerun()
# --- MAIN TAB ---
with main_tab:
if "latest_results" in st.session_state:
tm, reduced, labs = st.session_state.latest_results
st.subheader("Experiential Topics Visualisation")
fig, _ = datamapplot.create_plot(reduced, labs)
st.pyplot(fig)
st.subheader("Topic Info")
st.dataframe(tm.get_topic_info())
st.subheader("Export results (one row per topic)")
full_reps = tm.get_topics(full=True)
llm_reps = full_reps.get("LLM", {})
llm_names = {}
for tid, vals in llm_reps.items():
try:
llm_names[tid] = (
(vals[0][0] or "").strip().strip('"').strip(".")
)
except Exception:
llm_names[tid] = "Unlabelled"
if not llm_names:
st.caption("Note: Using default keyword-based topic names.")
llm_names = (
tm.get_topic_info().set_index("Topic")["Name"].to_dict()
)
doc_info = tm.get_document_info(docs)[["Document", "Topic"]]
include_outliers = st.checkbox(
"Include outlier topic (-1)", value=False
)
if not include_outliers:
doc_info = doc_info[doc_info["Topic"] != -1]
grouped = (
doc_info.groupby("Topic")["Document"]
.apply(list)
.reset_index(name="texts")
)
grouped["topic_name"] = grouped["Topic"].map(llm_names).fillna(
"Unlabelled"
)
export_topics = (
grouped.rename(columns={"Topic": "topic_id"})[
["topic_id", "topic_name", "texts"]
]
.sort_values("topic_id")
.reset_index(drop=True)
)
SEP = "\n"
export_csv = export_topics.copy()
export_csv["texts"] = export_csv["texts"].apply(
lambda lst: SEP.join(map(str, lst))
)
base = os.path.splitext(os.path.basename(CSV_PATH))[0]
gran = "sentences" if selected_granularity else "reports"
csv_name = f"topics_{base}_{gran}.csv"
jsonl_name = f"topics_{base}_{gran}.jsonl"
csv_path = (EVAL_DIR / csv_name).resolve()
jsonl_path = (EVAL_DIR / jsonl_name).resolve()
cL, cC, cR = st.columns(3)
with cL:
if st.button("Save CSV to eval/", use_container_width=True):
try:
export_csv.to_csv(csv_path, index=False)
st.success(f"Saved CSV → {csv_path}")
except Exception as e:
st.error(f"Failed to save CSV: {e}")
with cC:
if st.button("Save JSONL to eval/", use_container_width=True):
try:
with open(jsonl_path, "w", encoding="utf-8") as f:
for _, row in export_topics.iterrows():
rec = {
"topic_id": int(row["topic_id"]),
"topic_name": row["topic_name"],
"texts": list(map(str, row["texts"])),
}
f.write(
json.dumps(rec, ensure_ascii=False) + "\n"
)
st.success(f"Saved JSONL → {jsonl_path}")
except Exception as e:
st.error(f"Failed to save JSONL: {e}")
with cR:
# Create a Long Format DataFrame (One row per sentence)
# This ensures NO text is hidden due to Excel cell limits
long_format_df = doc_info.copy()
long_format_df["Topic Name"] = long_format_df["Topic"].map(llm_names).fillna("Unlabelled")
# Reorder columns for clarity
long_format_df = long_format_df[["Topic", "Topic Name", "Document"]]
# Define filename
long_csv_name = f"all_sentences_{base}_{gran}.csv"
st.download_button(
"Download All Sentences (Long Format)",
data=long_format_df.to_csv(index=False).encode("utf-8-sig"),
file_name=long_csv_name,
mime="text/csv",
use_container_width=True,
help="Download a CSV with one row per sentence. Best for checking exactly which sentences belong to which topic."
)
# st.caption("Preview (one row per topic)")
st.dataframe(export_csv)
else:
st.info("Click 'Run Analysis' to begin.")
# --- HISTORY TAB ---
with history_tab:
st.subheader("Run History")
if not st.session_state.history:
st.info("No runs yet.")
else:
for i, entry in enumerate(st.session_state.history):
with st.expander(f"Run {i+1} — {entry['timestamp']}"):
st.write(f"**Topics:** {entry['num_topics']}")
st.write(
f"**Outliers:** {entry.get('outlier_pct', entry.get('outlier_perc', 'N/A'))}"
)
st.write("**Topic Labels:**")
st.write(entry["llm_labels"])
with st.expander("Show full configuration"):
st.json(entry["config"]) |