Spaces:
Sleeping
Sleeping
Commit
Β·
a9f74e5
1
Parent(s):
fbb4e74
initial commit
Browse files- README.md +3 -3
- app.py +225 -0
- examples/warehouse_rgb.jpg +0 -0
- requirements.txt +9 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: SpaceQwen2.5 VL 3B Instruct
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.15.0
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: SpaceQwen2.5 VL 3B Instruct
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.15.0
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 7 |
+
from typing import List
|
| 8 |
+
|
| 9 |
+
MODEL_ID = "remyxai/SpaceQwen2.5-VL-3B-Instruct"
|
| 10 |
+
|
| 11 |
+
@spaces.GPU
|
| 12 |
+
def load_model():
|
| 13 |
+
print("Loading model and processor...")
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 16 |
+
MODEL_ID,
|
| 17 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 18 |
+
).to(device)
|
| 19 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 20 |
+
return model, processor
|
| 21 |
+
|
| 22 |
+
model, processor = load_model()
|
| 23 |
+
|
| 24 |
+
def process_image(image_path_or_obj):
|
| 25 |
+
"""Loads, resizes, and preprocesses an image path or Pillow Image."""
|
| 26 |
+
if isinstance(image_path_or_obj, str):
|
| 27 |
+
# Path on disk or from history
|
| 28 |
+
image = Image.open(image_path_or_obj).convert("RGB")
|
| 29 |
+
elif isinstance(image_path_or_obj, Image.Image):
|
| 30 |
+
image = image_path_or_obj.convert("RGB")
|
| 31 |
+
else:
|
| 32 |
+
raise ValueError("process_image expects a file path (str) or PIL.Image")
|
| 33 |
+
|
| 34 |
+
max_width = 512
|
| 35 |
+
if image.width > max_width:
|
| 36 |
+
aspect_ratio = image.height / image.width
|
| 37 |
+
new_height = int(max_width * aspect_ratio)
|
| 38 |
+
image = image.resize((max_width, new_height), Image.Resampling.LANCZOS)
|
| 39 |
+
print(f"Resized image to: {max_width}x{new_height}")
|
| 40 |
+
return image
|
| 41 |
+
|
| 42 |
+
def get_latest_image(history):
|
| 43 |
+
"""
|
| 44 |
+
Look from the end to find the last user-uploaded image (stored as (file_path,) ).
|
| 45 |
+
Return None if not found.
|
| 46 |
+
"""
|
| 47 |
+
for user_msg, _assistant_msg in reversed(history):
|
| 48 |
+
if isinstance(user_msg, tuple) and len(user_msg) > 0:
|
| 49 |
+
return user_msg[0]
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
def only_assistant_text(full_text: str) -> str:
|
| 53 |
+
"""
|
| 54 |
+
Helper to strip out any lines containing 'system', 'user', etc.,
|
| 55 |
+
and return only the final assistant answer.
|
| 56 |
+
Adjust this parsing if your model's output format differs.
|
| 57 |
+
"""
|
| 58 |
+
# Example output might look like:
|
| 59 |
+
# system
|
| 60 |
+
# ...
|
| 61 |
+
# user
|
| 62 |
+
# ...
|
| 63 |
+
# assistant
|
| 64 |
+
# The final answer
|
| 65 |
+
#
|
| 66 |
+
# We'll just split on 'assistant' and return everything after it.
|
| 67 |
+
if "assistant" in full_text:
|
| 68 |
+
parts = full_text.split("assistant", 1)
|
| 69 |
+
result = parts[-1].strip()
|
| 70 |
+
# Remove any leading punctuation (like a colon)
|
| 71 |
+
result = result.lstrip(":").strip()
|
| 72 |
+
return result
|
| 73 |
+
return full_text.strip()
|
| 74 |
+
|
| 75 |
+
def run_inference(image, prompt):
|
| 76 |
+
"""Runs Qwen2.5-VL inference on a single image and text prompt."""
|
| 77 |
+
system_msg = (
|
| 78 |
+
"You are a Vision Language Model specialized in interpreting visual data from images. "
|
| 79 |
+
"Your task is to analyze the provided image and respond to queries with concise answers."
|
| 80 |
+
)
|
| 81 |
+
conversation = [
|
| 82 |
+
{
|
| 83 |
+
"role": "system",
|
| 84 |
+
"content": [{"type": "text", "text": system_msg}],
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"role": "user",
|
| 88 |
+
"content": [
|
| 89 |
+
{"type": "image", "image": image},
|
| 90 |
+
{"type": "text", "text": prompt},
|
| 91 |
+
],
|
| 92 |
+
},
|
| 93 |
+
]
|
| 94 |
+
text_input = processor.apply_chat_template(
|
| 95 |
+
conversation, tokenize=False, add_generation_prompt=True
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
inputs = processor(text=[text_input], images=[image], return_tensors="pt").to(model.device)
|
| 99 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
| 100 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 101 |
+
# Parse out only the final assistant text
|
| 102 |
+
return only_assistant_text(output_text)
|
| 103 |
+
|
| 104 |
+
def add_message(history, user_input):
|
| 105 |
+
"""
|
| 106 |
+
Step 1 (triggered by user's 'Submit' or 'Send'):
|
| 107 |
+
- Save new text or images into `history`.
|
| 108 |
+
- The Chatbot display uses pairs: [user_text_or_image, assistant_reply].
|
| 109 |
+
"""
|
| 110 |
+
if not isinstance(history, list):
|
| 111 |
+
history = []
|
| 112 |
+
|
| 113 |
+
files = user_input.get("files", [])
|
| 114 |
+
text = user_input.get("text", "")
|
| 115 |
+
|
| 116 |
+
# Store images
|
| 117 |
+
for f in files:
|
| 118 |
+
# Each image is stored as `[(file_path,), None]`
|
| 119 |
+
history.append([(f,), None])
|
| 120 |
+
|
| 121 |
+
# Store text
|
| 122 |
+
if text:
|
| 123 |
+
history.append([text, None])
|
| 124 |
+
|
| 125 |
+
return history, gr.MultimodalTextbox(value=None)
|
| 126 |
+
|
| 127 |
+
def inference_interface(history):
|
| 128 |
+
"""
|
| 129 |
+
Step 2: Use the most recent text + the most recent image to run Qwen2.5-VL.
|
| 130 |
+
Instead of adding another entry, we fill the assistant's answer into
|
| 131 |
+
the last user text entry.
|
| 132 |
+
"""
|
| 133 |
+
if not history:
|
| 134 |
+
return history, gr.MultimodalTextbox(value=None)
|
| 135 |
+
|
| 136 |
+
# 1) Get the user's most recent text
|
| 137 |
+
user_text = ""
|
| 138 |
+
# We'll search from the end for the first str we find
|
| 139 |
+
for idx in range(len(history) - 1, -1, -1):
|
| 140 |
+
user_msg, assistant_msg = history[idx]
|
| 141 |
+
if isinstance(user_msg, str):
|
| 142 |
+
user_text = user_msg
|
| 143 |
+
# We'll also keep track of this index so we can fill in the assistant reply
|
| 144 |
+
user_idx = idx
|
| 145 |
+
break
|
| 146 |
+
else:
|
| 147 |
+
# No user text found
|
| 148 |
+
print("No user text found in history. Skipping inference.")
|
| 149 |
+
return history, gr.MultimodalTextbox(value=None)
|
| 150 |
+
|
| 151 |
+
# 2) Get the latest image from the entire conversation
|
| 152 |
+
latest_image = get_latest_image(history)
|
| 153 |
+
if not latest_image:
|
| 154 |
+
# No image found => can't run the model
|
| 155 |
+
print("No image found in history. Skipping inference.")
|
| 156 |
+
return history, gr.MultimodalTextbox(value=None)
|
| 157 |
+
|
| 158 |
+
# 3) Process the image
|
| 159 |
+
pil_image = process_image(latest_image)
|
| 160 |
+
|
| 161 |
+
# 4) Run inference
|
| 162 |
+
assistant_reply = run_inference(pil_image, user_text)
|
| 163 |
+
|
| 164 |
+
# 5) Fill that assistant reply back into the last user text entry
|
| 165 |
+
history[user_idx][1] = assistant_reply
|
| 166 |
+
return history, gr.MultimodalTextbox(value=None)
|
| 167 |
+
|
| 168 |
+
def build_demo():
|
| 169 |
+
with gr.Blocks() as demo:
|
| 170 |
+
gr.Markdown("# SpaceQwen2.5-VL Image Prompt Chatbot")
|
| 171 |
+
|
| 172 |
+
chatbot = gr.Chatbot([], line_breaks=True)
|
| 173 |
+
chat_input = gr.MultimodalTextbox(
|
| 174 |
+
interactive=True,
|
| 175 |
+
file_types=["image"],
|
| 176 |
+
placeholder="Enter text or upload an image (or both).",
|
| 177 |
+
show_label=True
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# When the user presses Enter in the MultimodalTextbox:
|
| 181 |
+
submit_event = chat_input.submit(
|
| 182 |
+
fn=add_message, # Step 1: store user data
|
| 183 |
+
inputs=[chatbot, chat_input],
|
| 184 |
+
outputs=[chatbot, chat_input]
|
| 185 |
+
)
|
| 186 |
+
# After storing, run inference
|
| 187 |
+
submit_event.then(
|
| 188 |
+
fn=inference_interface, # Step 2: run Qwen2.5-VL
|
| 189 |
+
inputs=[chatbot],
|
| 190 |
+
outputs=[chatbot, chat_input]
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Same logic for a "Send" button
|
| 194 |
+
with gr.Row():
|
| 195 |
+
send_button = gr.Button("Send")
|
| 196 |
+
clear_button = gr.ClearButton([chatbot, chat_input])
|
| 197 |
+
|
| 198 |
+
send_click = send_button.click(
|
| 199 |
+
fn=add_message,
|
| 200 |
+
inputs=[chatbot, chat_input],
|
| 201 |
+
outputs=[chatbot, chat_input]
|
| 202 |
+
)
|
| 203 |
+
send_click.then(
|
| 204 |
+
fn=inference_interface,
|
| 205 |
+
inputs=[chatbot],
|
| 206 |
+
outputs=[chatbot, chat_input]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Example
|
| 210 |
+
gr.Examples(
|
| 211 |
+
examples=[
|
| 212 |
+
{
|
| 213 |
+
"text": "Give me the height of the man in the red hat in feet.",
|
| 214 |
+
"files": ["./examples/warehouse_rgb.jpg"]
|
| 215 |
+
}
|
| 216 |
+
],
|
| 217 |
+
inputs=[chat_input],
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return demo
|
| 221 |
+
|
| 222 |
+
if __name__ == "__main__":
|
| 223 |
+
demo = build_demo()
|
| 224 |
+
demo.launch(share=True)
|
| 225 |
+
|
examples/warehouse_rgb.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers>=4.41.0
|
| 3 |
+
Pillow
|
| 4 |
+
gradio==5.15.0
|
| 5 |
+
spaces
|
| 6 |
+
multiprocess
|
| 7 |
+
requests
|
| 8 |
+
accelerate>=0.26.0
|
| 9 |
+
git+https://github.com/huggingface/transformers.git
|