pythonlearnreal commited on
Commit
106478e
·
verified ·
1 Parent(s): 8af61df

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +22 -0
  2. .gitignore +81 -0
  3. DEPLOYMENT_GUIDE.md +251 -0
  4. Inference.ipynb +62 -0
  5. LICENSE +21 -0
  6. README.md +105 -12
  7. README_DEPLOYMENT.md +88 -0
  8. REFACTORING_README.md +172 -0
  9. app-webui.bat +9 -0
  10. app.py +7 -0
  11. ckpts/README.md +10 -0
  12. data/Emilia_ZH_EN_pinyin/vocab.txt +2586 -0
  13. data/librispeech_pc_test_clean_cross_sentence.lst +0 -0
  14. deployment/.gitignore +81 -0
  15. deployment/README.md +89 -0
  16. deployment/app.py +45 -0
  17. deployment/app_minimal.py +31 -0
  18. deployment/requirements.txt +15 -0
  19. deployment/requirements_minimal.txt +1 -0
  20. deployment/src/f5_tts/api.py +174 -0
  21. deployment/src/f5_tts/cleantext/number_tha.py +145 -0
  22. deployment/src/f5_tts/cleantext/th_repeat.py +41 -0
  23. deployment/src/f5_tts/config.py +98 -0
  24. deployment/src/f5_tts/configs/E2TTS_Base_train.yaml +45 -0
  25. deployment/src/f5_tts/configs/E2TTS_Small_train.yaml +45 -0
  26. deployment/src/f5_tts/configs/F5TTS_Base_train.yaml +48 -0
  27. deployment/src/f5_tts/configs/F5TTS_Small_train.yaml +48 -0
  28. deployment/src/f5_tts/eval/README.md +52 -0
  29. deployment/src/f5_tts/eval/ecapa_tdnn.py +330 -0
  30. deployment/src/f5_tts/eval/eval_infer_batch.py +207 -0
  31. deployment/src/f5_tts/eval/eval_infer_batch.sh +13 -0
  32. deployment/src/f5_tts/eval/eval_librispeech_test_clean.py +96 -0
  33. deployment/src/f5_tts/eval/eval_seedtts_testset.py +95 -0
  34. deployment/src/f5_tts/eval/eval_utmos.py +44 -0
  35. deployment/src/f5_tts/eval/utils_eval.py +413 -0
  36. deployment/src/f5_tts/f5_tts_webui.py +295 -0
  37. deployment/src/f5_tts/infer/README.md +219 -0
  38. deployment/src/f5_tts/infer/SHARED.md +164 -0
  39. deployment/src/f5_tts/infer/examples/basic/basic.toml +11 -0
  40. deployment/src/f5_tts/infer/examples/basic/basic_ref_en.wav +3 -0
  41. deployment/src/f5_tts/infer/examples/basic/basic_ref_zh.wav +3 -0
  42. deployment/src/f5_tts/infer/examples/multi/country.flac +3 -0
  43. deployment/src/f5_tts/infer/examples/multi/main.flac +3 -0
  44. deployment/src/f5_tts/infer/examples/multi/story.toml +20 -0
  45. deployment/src/f5_tts/infer/examples/multi/story.txt +1 -0
  46. deployment/src/f5_tts/infer/examples/multi/town.flac +3 -0
  47. deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_1.wav +3 -0
  48. deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_2.wav +3 -0
  49. deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_3.wav +3 -0
  50. deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_4.wav +3 -0
.gitattributes CHANGED
@@ -33,3 +33,25 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ deployment/src/f5_tts/infer/examples/basic/basic_ref_en.wav filter=lfs diff=lfs merge=lfs -text
37
+ deployment/src/f5_tts/infer/examples/basic/basic_ref_zh.wav filter=lfs diff=lfs merge=lfs -text
38
+ deployment/src/f5_tts/infer/examples/multi/country.flac filter=lfs diff=lfs merge=lfs -text
39
+ deployment/src/f5_tts/infer/examples/multi/main.flac filter=lfs diff=lfs merge=lfs -text
40
+ deployment/src/f5_tts/infer/examples/multi/town.flac filter=lfs diff=lfs merge=lfs -text
41
+ deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_1.wav filter=lfs diff=lfs merge=lfs -text
42
+ deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_2.wav filter=lfs diff=lfs merge=lfs -text
43
+ deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_3.wav filter=lfs diff=lfs merge=lfs -text
44
+ deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_4.wav filter=lfs diff=lfs merge=lfs -text
45
+ deployment/src/f5_tts/infer/examples/thai_examples/tts_gen_1.wav filter=lfs diff=lfs merge=lfs -text
46
+ deployment/src/f5_tts/infer/examples/thai_examples/tts_gen_2.wav filter=lfs diff=lfs merge=lfs -text
47
+ src/f5_tts/infer/examples/basic/basic_ref_en.wav filter=lfs diff=lfs merge=lfs -text
48
+ src/f5_tts/infer/examples/basic/basic_ref_zh.wav filter=lfs diff=lfs merge=lfs -text
49
+ src/f5_tts/infer/examples/multi/country.flac filter=lfs diff=lfs merge=lfs -text
50
+ src/f5_tts/infer/examples/multi/main.flac filter=lfs diff=lfs merge=lfs -text
51
+ src/f5_tts/infer/examples/multi/town.flac filter=lfs diff=lfs merge=lfs -text
52
+ src/f5_tts/infer/examples/thai_examples/ref_gen_1.wav filter=lfs diff=lfs merge=lfs -text
53
+ src/f5_tts/infer/examples/thai_examples/ref_gen_2.wav filter=lfs diff=lfs merge=lfs -text
54
+ src/f5_tts/infer/examples/thai_examples/ref_gen_3.wav filter=lfs diff=lfs merge=lfs -text
55
+ src/f5_tts/infer/examples/thai_examples/ref_gen_4.wav filter=lfs diff=lfs merge=lfs -text
56
+ src/f5_tts/infer/examples/thai_examples/tts_gen_1.wav filter=lfs diff=lfs merge=lfs -text
57
+ src/f5_tts/infer/examples/thai_examples/tts_gen_2.wav filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ build/
8
+ develop-eggs/
9
+ dist/
10
+ downloads/
11
+ eggs/
12
+ .eggs/
13
+ lib/
14
+ lib64/
15
+ parts/
16
+ sdist/
17
+ var/
18
+ wheels/
19
+ *.egg-info/
20
+ .installed.cfg
21
+ *.egg
22
+ MANIFEST
23
+
24
+ # PyTorch
25
+ *.pth
26
+ *.pt
27
+
28
+ # Gradio
29
+ .gradio/
30
+ flagged/
31
+
32
+ # Environment
33
+ .env
34
+ .venv
35
+ env/
36
+ venv/
37
+ ENV/
38
+ env.bak/
39
+ venv.bak/
40
+
41
+ # IDE
42
+ .vscode/
43
+ .idea/
44
+ *.swp
45
+ *.swo
46
+ *~
47
+
48
+ # OS
49
+ .DS_Store
50
+ .DS_Store?
51
+ ._*
52
+ .Spotlight-V100
53
+ .Trashes
54
+ ehthumbs.db
55
+ Thumbs.db
56
+
57
+ # Logs
58
+ *.log
59
+ logs/
60
+
61
+ # Temporary files
62
+ *.tmp
63
+ *.temp
64
+ tmp/
65
+ temp/
66
+
67
+ # Cache
68
+ .cache/
69
+ *.cache
70
+
71
+ # Model downloads (if large)
72
+ # ckpts/
73
+ # models/
74
+
75
+ # Audio files (if large)
76
+ # *.wav
77
+ # *.mp3
78
+ # *.flac
79
+
80
+ # Jupyter
81
+ .ipynb_checkpoints
DEPLOYMENT_GUIDE.md ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 คู่มือการ Deploy F5-TTS Thai WebUI
2
+
3
+ ## วิธีการ Deploy ไป Hugging Face Spaces
4
+
5
+ ### ขั้นตอนที่ 1: เตรียม Account และ Repository
6
+
7
+ 1. **สร้าง Hugging Face Account** (ถ้ายังไม่มี)
8
+ - ไปที่ https://huggingface.co/join
9
+ - สร้าง account ฟรี
10
+
11
+ 2. **สร้าง Space ใหม่**
12
+ - ไปที่ https://huggingface.co/new-space
13
+ - ตั้งชื่อ Space (เช่น `f5-tts-thai`)
14
+ - เลือก SDK: **Gradio**
15
+ - เลือก Hardware: **CPU basic** (ฟรี) หรือ **GPU** (ต้องเสียเงิน)
16
+
17
+ ### ขั้นตอนที่ 2: Upload โค้ด
18
+
19
+ **วิธีที่ 1: ใช้ Git (แนะนำ)**
20
+
21
+ ```bash
22
+ # Clone repository ที่สร้างจาก HF Spaces
23
+ git clone https://huggingface.co/spaces/YOUR_USERNAME/f5-tts-thai
24
+ cd f5-tts-thai
25
+
26
+ # คัดลอกไฟล์จากโปรเจ็กต์ของคุณ
27
+ cp -r /path/to/F5-TTS-THAI/src .
28
+ cp /path/to/F5-TTS-THAI/app.py .
29
+ cp /path/to/F5-TTS-THAI/requirements.txt .
30
+
31
+ # สร้าง README.md จาก README_DEPLOYMENT.md
32
+ cp /path/to/F5-TTS-THAI/README_DEPLOYMENT.md README.md
33
+
34
+ # Commit และ push
35
+ git add .
36
+ git commit -m "Initial deployment"
37
+ git push
38
+ ```
39
+
40
+ **วิธีที่ 2: อัปโหลดผ่าน Web Interface**
41
+
42
+ 1. ไปที่ Space ที่คุณสร้าง
43
+ 2. คลิก "Files and versions"
44
+ 3. อัปโหลดไฟล์ทีละไฟล์:
45
+ - `app.py`
46
+ - `requirements.txt`
47
+ - `README.md` (จาก README_DEPLOYMENT.md)
48
+ - โฟลเดอร์ `src/` ทั้งหมด
49
+
50
+ ### ขั้นตอนที่ 3: ตรวจสอบการ Deploy
51
+
52
+ 1. **รอการ Build**
53
+ - Hugging Face จะ build app อัตโนมัติ
54
+ - ดู logs ได้ที่ "Logs" tab
55
+
56
+ 2. **ทดสอบ App**
57
+ - เมื่อ build สำเร็จ จะแสดง URL ของ app
58
+ - ทดสอบ functionality ต่างๆ
59
+
60
+ ### ขั้นตอนที่ 4: Configuration ขั้นสูง
61
+
62
+ **เปิดใช้งาน GPU (ต้องเสียเงิน)**
63
+
64
+ ```yaml
65
+ # ใน README.md header
66
+ ---
67
+ title: F5-TTS Thai
68
+ emoji: 🎤
69
+ colorFrom: blue
70
+ colorTo: purple
71
+ sdk: gradio
72
+ sdk_version: 4.44.0
73
+ app_file: app.py
74
+ pinned: false
75
+ license: mit
76
+ python_version: 3.10
77
+ hardware: gpu-t4-small # เปลี่ยนจาก cpu-basic
78
+ ---
79
+ ```
80
+
81
+ **ปรับแต่ง Environment Variables**
82
+
83
+ ใน Space settings เพิ่ม variables:
84
+ - `CUDA_VISIBLE_DEVICES=0` (สำหรับ GPU)
85
+ - `TRANSFORMERS_CACHE=/tmp` (เพื่อประหยัด storage)
86
+
87
+ ## วิธีการ Deploy ไป Gradio.app
88
+
89
+ ### ขั้นตอนที่ 1: สร้าง Account
90
+
91
+ 1. ไปที่ https://gradio.app
92
+ 2. สร้าง account และ login
93
+
94
+ ### ขั้นตอนที่ 2: Deploy
95
+
96
+ ```bash
97
+ # ติดตั้ง gradio
98
+ pip install gradio
99
+
100
+ # Upload app
101
+ python app.py --share
102
+ ```
103
+
104
+ ## การ Optimize สำหรับ Production
105
+
106
+ ### 1. ลดขนาด Model
107
+
108
+ ```python
109
+ # ใน config.py เปลี่ยนเป็น
110
+ DEFAULT_MODEL_BASE = "hf://VIZINTZOR/F5-TTS-THAI/model_650000_FP16.pt" # ใช้ FP16
111
+ ```
112
+
113
+ ### 2. เพิ่ม Caching
114
+
115
+ ```python
116
+ # ใน model_manager.py
117
+ @lru_cache(maxsize=1)
118
+ def get_cached_model():
119
+ return load_model(...)
120
+ ```
121
+
122
+ ### 3. ปรับแต่ง Memory Usage
123
+
124
+ ```python
125
+ # ใน app.py
126
+ import torch
127
+ torch.set_num_threads(2) # ลด CPU threads
128
+ ```
129
+
130
+ ### 4. เพิ่ม Error Handling
131
+
132
+ ```python
133
+ # ใน app.py
134
+ import gc
135
+ import torch
136
+
137
+ def cleanup_memory():
138
+ gc.collect()
139
+ if torch.cuda.is_available():
140
+ torch.cuda.empty_cache()
141
+ ```
142
+
143
+ ## Troubleshooting
144
+
145
+ ### ปัญหา: Out of Memory
146
+
147
+ **แก้ไข:**
148
+ ```python
149
+ # ใช้โมเดล FP16
150
+ # ลด NFE steps
151
+ # เพิ่ม memory cleanup
152
+ ```
153
+
154
+ ### ปัญหา: Slow Loading
155
+
156
+ **แก้ไข:**
157
+ ```python
158
+ # Pre-load models
159
+ # ใช้ model caching
160
+ # ปรับ CPU/GPU settings
161
+ ```
162
+
163
+ ### ปัญหา: Import Errors
164
+
165
+ **แก้ไข:**
166
+ ```python
167
+ # ตรวจสอบ requirements.txt
168
+ # เพิ่ม try-except สำหรับ imports
169
+ # ใช้ fallback interface
170
+ ```
171
+
172
+ ## การ Monitor และ Maintain
173
+
174
+ ### 1. ดู Logs
175
+
176
+ ```bash
177
+ # ดู logs ของ HF Spaces
178
+ # Monitor memory usage
179
+ # ตรวจสอบ error rates
180
+ ```
181
+
182
+ ### 2. Update App
183
+
184
+ ```bash
185
+ # git pull latest changes
186
+ # test locally first
187
+ # deploy gradually
188
+ ```
189
+
190
+ ### 3. Scale Up/Down
191
+
192
+ ```bash
193
+ # เปลี่ยน hardware specs
194
+ # ปรับ concurrent users
195
+ # optimize model loading
196
+ ```
197
+
198
+ ## Security Considerations
199
+
200
+ ### 1. Input Validation
201
+
202
+ ```python
203
+ def validate_audio_input(audio_file):
204
+ # ตรวจสอบ��นาดไฟล์
205
+ # ตรวจสอบรูปแบบไฟล์
206
+ # จำกัดความยาวเสียง
207
+ ```
208
+
209
+ ### 2. Rate Limiting
210
+
211
+ ```python
212
+ import time
213
+ from functools import wraps
214
+
215
+ def rate_limit(calls_per_minute=10):
216
+ # implement rate limiting
217
+ ```
218
+
219
+ ### 3. Content Filtering
220
+
221
+ ```python
222
+ def filter_inappropriate_content(text):
223
+ # กรองเนื้อหาที่ไม่เหมาะสม
224
+ # ตรวจสอบ spam
225
+ ```
226
+
227
+ ## Cost Optimization
228
+
229
+ ### Free Tier (CPU)
230
+ - **ข้อจำกัด**: ช้า, memory จำกัด
231
+ - **เหมาะสำหรับ**: demo, testing
232
+
233
+ ### GPU Tier (T4/A10G)
234
+ - **ราคา**: ~$0.60-3.00/ชั่วโมง
235
+ - **เหมาะสำหรับ**: production, fast inference
236
+
237
+ ### Tips ประหยัดค่าใช้จ่าย
238
+ 1. ใช้ CPU สำหรับ development
239
+ 2. เปิด GPU เฉพาะเวลาที่ต้องการ
240
+ 3. ใช้ auto-shutdown
241
+ 4. Monitor usage regularly
242
+
243
+ ## สรุป
244
+
245
+ การ deploy F5-TTS Thai WebUI ไป cloud platforms ทำได้ง่ายและมีหลายทางเลือก:
246
+
247
+ ✅ **Hugging Face Spaces**: ง่าย, มี free tier
248
+ ✅ **Gradio.app**: รวดเร็ว, เหมาะสำหรับ quick demos
249
+ ✅ **Cloud Platforms**: AWS, GCP, Azure สำหรับ enterprise
250
+
251
+ เลือกตามความต้องการและงบประมาณของคุณ! 🚀
Inference.ipynb ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU"
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "markdown",
21
+ "source": [
22
+ "# ติดตั้ง"
23
+ ],
24
+ "metadata": {
25
+ "id": "fXnq08ZVNMAh"
26
+ }
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {
32
+ "id": "tTdQJcckmuZ4"
33
+ },
34
+ "outputs": [],
35
+ "source": [
36
+ "!git clone https://github.com/VYNCX/F5-TTS-THAI.git\n",
37
+ "%cd F5-TTS-THAI\n",
38
+ "!pip install git+https://github.com/VYNCX/F5-TTS-THAI.git"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "markdown",
43
+ "source": [
44
+ "# ใช้งาน"
45
+ ],
46
+ "metadata": {
47
+ "id": "wJNZvZB7PXSI"
48
+ }
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "source": [
53
+ "!python src/f5_tts/f5_tts_webui.py --share"
54
+ ],
55
+ "metadata": {
56
+ "id": "UoKmwDmfm6qP"
57
+ },
58
+ "execution_count": null,
59
+ "outputs": []
60
+ }
61
+ ]
62
+ }
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Yushen CHEN
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,12 +1,105 @@
1
- ---
2
- title: F5 TTS THAI
3
- emoji: 📚
4
- colorFrom: green
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.38.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: F5-TTS-THAI
3
+ app_file: .
4
+ sdk: gradio
5
+ sdk_version: 5.38.0
6
+ ---
7
+ # F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching. Support For Thai language.
8
+
9
+ [![python](https://img.shields.io/badge/Python-3.10-brightgreen)](https://github.com/SWivid/F5-TTS)
10
+ [![arXiv](https://img.shields.io/badge/arXiv-2410.06885-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.06885)
11
+ [![lab](https://img.shields.io/badge/X--LANCE-Lab-grey?labelColor=lightgrey)](https://x-lance.sjtu.edu.cn/)
12
+ [![lab](https://img.shields.io/badge/Peng%20Cheng-Lab-grey?labelColor=lightgrey)](https://www.pcl.ac.cn)
13
+ <!-- <img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto"> -->
14
+
15
+ Text-to-Speech (TTS) ภาษาไทย — เครื่องมือสร้างเสียงพูดจากข้อความด้วยเทคนิค Flow Matching ด้วยโมเดล F5-TTS
16
+
17
+ โมเดล Finetune : [VIZINTZOR/F5-TTS-THAI](https://huggingface.co/VIZINTZOR/F5-TTS-THAI)
18
+
19
+ - โมเดล last steps : 1,000,000
20
+ - การอ่านข้อความยาวๆ หรือบางคำ ยังไม่ถูกต้อง
21
+
22
+ # การติดตั้ง
23
+ ก่อนเริ่มใช้งาน ต้องติดตั้ง:
24
+ - Python (แนะนำเวอร์ชัน 3.10 ขึ้นไป)
25
+ - [CUDA](https://developer.nvidia.com/cuda-downloads) แนะนำ CUDA version 11.8
26
+ ```sh
27
+ git clone https://github.com/VYNCX/F5-TTS-THAI.git
28
+ cd F5-TTS-THAI
29
+ python -m venv venv
30
+ call venv/scripts/activate
31
+ pip install git+https://github.com/VYNCX/F5-TTS-THAI.git
32
+
33
+ #จำเป็นต้องติดตั้งเพื่อใช้งานได้มีประสิทธิภาพกับ GPU
34
+ pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
35
+ ```
36
+ หรือ รันไฟล์ `install.bat` เพื่อติดตั้ง
37
+
38
+ # การใช้งาน
39
+ สามารถรันไฟล์ `app-webui.bat` เพื่อใช้งานได้
40
+ ```sh
41
+ python src/f5_tts/f5_tts_webui.py
42
+ ```
43
+ หรือ
44
+
45
+ ```sh
46
+ f5-tts_webui
47
+ ```
48
+ ใช้งานบน [Google Colab](https://colab.research.google.com/drive/10yb4-mGbSoyyfMyDX1xVF6uLqfeoCNxV?usp=sharing)
49
+
50
+ คำแนะนำ :
51
+ - สามารถตั้งค่า "ตัวอักษรสูงสุดต่อส่วน" หรือ max_chars เพื่อลดความผิดพลาดการอ่าน แต่ความเร็วในการสร้างจะช้าลง สามารถปรับลด NFE Step เพื่อเพิ่มความเร็วได้.
52
+ - อย่าลืมเว้นวรรคประโยคเพื่อให้สามารถแบ่งส่วนในการสร้างได้.
53
+ - สำหรับ ref_text หรือ ข้อความตันฉบับ แนะนำให้ใช้เป็นภาษาไทยหรือคำอ่านภาษาไทยสำหรับเสียงภาษาอื่น เพื่อให้การอ่านภาษาไทยดีขึ้น เช่น Good Morning > กู้ดมอร์นิ่ง.
54
+ - สำหรับเสียงต้นแบบ ควรใช้ความยาวไม่เกิน 10 วินาที ถ้าเป็นไปได้ห้ามมีเสียงรบกวน.
55
+ - สามารถปรับลดความเร็ว เพื่อให้การอ่านคำดีขึ้นได้ เช่น ความเร็ว 0.8-0.9 เพื่อลดการอ่านผิดหรือคำขาดหาย แต่ลดมากไปอาจมีเสียงต้นฉบับแทรกเข้ามา.
56
+
57
+ <details><summary>ตัวอย่าง WebUI</summary>
58
+
59
+ - Text To Speech
60
+ ![Example_Gradio#3](https://github.com/user-attachments/assets/9fd6bf42-3c34-41aa-8f88-3f7ea191e4f0)
61
+
62
+ - Multi Speech
63
+ ![Example_Gradio#4](https://github.com/user-attachments/assets/fc57b2d0-bef9-4454-94c3-b72ca2551265)
64
+
65
+
66
+ # ฝึกอบรม และ Finetune
67
+ ใช้งานบน Google Colab [Finetune](https://colab.research.google.com/drive/1jwzw4Jn1qF8-F0o3TND68hLHdIqqgYEe?usp=sharing) หรือ
68
+
69
+ ติดตั้ง
70
+
71
+ ```sh
72
+ cd F5-TTS-THAI
73
+ pip install -e .
74
+ ```
75
+
76
+ เปิด Gradio
77
+ ```sh
78
+ f5-tts_finetune-gradio
79
+ ```
80
+
81
+ # ตัวอย่าง��สียง
82
+
83
+ - เสียงต้นฉบับ
84
+ - ข้อความ : ได้รับข่าวคราวของเราที่จะหาที่มันเป็นไปที่จะจัดขึ้น.
85
+
86
+ https://github.com/user-attachments/assets/003c8a54-6f75-4456-907d-d28897e4c393
87
+
88
+ - เสียงที่สร้าง 1(ข้อความเดียวกัน)
89
+ - ข้อความ : ได้รับข่าวคราวของเราที่จะหาที่มันเป็นไปที่จะจัดขึ้น.
90
+
91
+ https://github.com/user-attachments/assets/926829f2-8d56-4f0f-8e2e-d73cfcecc511
92
+
93
+ - เสียงที่สร้าง 2(ข้อความใหม่)
94
+ - ข้อความ : ฉันชอบฟังเพลงขณะขับรถ เพราะช่วยให้รู้สึกผ่อนคลาย
95
+
96
+ https://github.com/user-attachments/assets/06d6e94b-5f83-4d69-99d1-ad19caa9792b
97
+
98
+ # อ้างอิง
99
+
100
+ - [F5-TTS](https://github.com/SWivid/F5-TTS)
101
+
102
+
103
+
104
+
105
+
README_DEPLOYMENT.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: F5-TTS Thai
3
+ emoji: 🎤
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.44.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ python_version: 3.10
12
+ hardware: cpu-basic
13
+ ---
14
+
15
+ # F5-TTS ภาษาไทย 🎤
16
+
17
+ Zero-shot Text-to-Speech สำหรับภาษาไทย ด้วยโมเดล F5-TTS
18
+
19
+ ## ✨ Features
20
+
21
+ - **Multi-Speech Generation**: สร้างเสียงพูดหลายสไตล์ในไฟล์เดียว
22
+ - **Voice Cloning**: โคลนเสียงจากไฟล์ตัวอย่างสั้นๆ
23
+ - **Thai Language Support**: รองรับภาษาไทยอย่างเต็มรูปแบบ
24
+ - **Real-time Processing**: ประมวลผลแบบ real-time
25
+ - **Segment Editing**: แก้ไขและปรับแต่งเสียงแต่ละส่วนได้
26
+
27
+ ## 🚀 วิธีใช้งาน
28
+
29
+ ### Multi-Speech Generation
30
+
31
+ 1. **เพิ่มประเภทคำพูด**: คลิก "เพิ่มประเภทคำพูด" เพื่อเพิ่มสไตล์เสียงใหม่
32
+ 2. **อัปโหลดเสียงตัวอย่าง**: อัปโหลดไฟล์เสียงสำหรับแต่ละสไตล์
33
+ 3. **ใส่ข้อความต้นฉบับ**: พิมพ์ข้อความที่สอดคล้องกับเสียงตัวอย่าง
34
+ 4. **เขียนสคริปต์**: ใช้รูปแบบ `{ชื่อสไตล์} ข้อความที่จะพูด`
35
+
36
+ ### ตัวอย่างการใช้งาน
37
+
38
+ ```
39
+ {ปกติ} สวัสดีครับ มีอะไรให้ผมช่วยไหมครับ
40
+ {เศร้า} ผมเครียดจริงๆ นะตอนนี้...
41
+ {โกรธ} รู้ไหม! เธอไม่ควรอยู่ที่นี่!
42
+ {กระซิบ} ฉันมีอะไรจะบอกคุณ แต่มันเป็นความลับนะ
43
+ ```
44
+
45
+ ## ⚙️ Technical Details
46
+
47
+ ### Models Used
48
+ - **F5-TTS**: Zero-shot text-to-speech model
49
+ - **Vocoder**: Neural vocoder for high-quality audio synthesis
50
+ - **Text Processing**: Thai text normalization and processing
51
+
52
+ ### System Requirements
53
+ - **RAM**: อย่างน้อย 4GB (แนะนำ 8GB+)
54
+ - **GPU**: ไม่จำเป็น แต่จะช่วยเพิ่มความเร็ว
55
+ - **Storage**: ~2GB สำหรับโมเดลและ dependencies
56
+
57
+ ## 🔧 Configuration
58
+
59
+ ### Model Settings
60
+ - **NFE Steps**: ควบคุมคุณภาพเสียง (16-64)
61
+ - **Cross Fade Duration**: ปรับการต่อเสียงระหว่างส่วน
62
+ - **Speed**: ปรับความเร็วการพูด
63
+ - **CFG Strength**: ปรับความแข็งแกร่งของ guidance
64
+
65
+ ### Tips สำหรับผลลัพธ์ที่ดี
66
+ 1. **เสียงตัวอย่าง**: ใช้เสียงที่ชัดเจน ไม่มีเสียงรบกวน ความยาว 5-10 วินาที
67
+ 2. **ข้อความต้นฉบับ**: ให้ตรงกับเสียงตัวอย่างที่สุด
68
+ 3. **ข้อความที่จะสร้าง**: เว้นวรรคและใส่เครื่องหมายวรรคตอนให้ชัดเจน
69
+ 4. **การตั้งค่า**: เริ่มด้วยค่า default แล้วค่อยปรับแต่ง
70
+
71
+ ## 🚨 Limitations
72
+
73
+ - รองรับเฉพาะภาษาไทยเป็นหลัก
74
+ - คุณภาพเสียงขึ้นอยู่กับเสียงตัวอย่าง
75
+ - ใช้เวลาในการประมวลผลตามความยาวข้อความ
76
+ - ต้องใช้ internet เพื่อดาวน์โหลดโมเดล
77
+
78
+ ## 📝 License
79
+
80
+ MIT License - ใช้งานได้อย่างอิสระ
81
+
82
+ ## 🤝 Contributing
83
+
84
+ สามารถมีส่วนร่วมพัฒนาได้ที่ [GitHub Repository](https://github.com/yourusername/F5-TTS-THAI)
85
+
86
+ ## 🐛 Bug Reports
87
+
88
+ หากพบปัญหาการใช้งาน กรุณาแจ้งได้ที่ Issues ของ GitHub Repository
REFACTORING_README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS Thai WebUI - Refactoring Documentation
2
+
3
+ ## สรุปการ Refactoring
4
+
5
+ ไฟล์ `src/f5_tts/f5_tts_webui.py` ได้รับการปรับปรุงโครงสร้างใหม่ (refactored) เพื่อให้โค้ดมีความเป็นระเบียบ ง่ายต่อการดูแลรักษา และขยายได้ในอนาคต
6
+
7
+ ## ปัญหาของโค้ดเดิม
8
+
9
+ - **ไฟล์ใหญ่เกินไป**: มีโค้ดกว่า 680 บรรทัดในไฟล์เดียว
10
+ - **ฟังก์ชันยาวเกินไป**: มีฟังก์ชันที่มีโค้ดหลายร้อยบรรทัด
11
+ - **ตัวแปร Global**: ใช้ตัวแปร global หลายตัวทำให้ยากต่อการติดตาม
12
+ - **การแยกหน้าที่ไม่ชัดเจน**: โค้ดสำหรับ UI, business logic, และ model management ปนกัน
13
+ - **การ duplicate code**: มีโค้ดที่ทำงานคล้ายกันแต่เขียนซ้ำ
14
+ - **ยากต่อการทดสอบ**: โค้ดเดิมยากต่อการเขียน unit tests
15
+
16
+ ## โครงสร้างใหม่หลังการ Refactoring
17
+
18
+ ### 1. แยกไฟล์ตามหน้าที่ (Separation of Concerns)
19
+
20
+ ```
21
+ src/f5_tts/
22
+ ├── config.py # Configuration และ constants
23
+ ├── model_manager.py # จัดการโมเดล F5-TTS
24
+ ├── tts_processor.py # ประมวลผล Text-to-Speech และ Speech-to-Text
25
+ ├── multi_speech_processor.py # ประมวลผล Multi-Speech และ Segment Editing
26
+ ├── ui_components.py # Gradio UI Components
27
+ └── f5_tts_webui.py # Main application class
28
+ ```
29
+
30
+ ### 2. Classes และ Responsibilities
31
+
32
+ #### `config.py`
33
+ - เก็บ constants และ configuration ทั้งหมด
34
+ - Model paths, default settings, UI configurations
35
+ - ข้อความสำหรับ UI (ตัวอย่าง, คำแนะนำ)
36
+
37
+ #### `ModelManager` class
38
+ - จัดการการโหลดและเปลี่ยนโมเดล F5-TTS
39
+ - รองรับ Default, FP16, และ Custom models
40
+ - จัดการ vocoder loading
41
+ - Error handling สำหรับการโหลดโมเดล
42
+
43
+ #### `TTSProcessor` class
44
+ - ประมวลผล Text-to-Speech
45
+ - จัดการ seed generation และ validation
46
+ - Audio preprocessing และ postprocessing
47
+ - Spectrogram generation
48
+
49
+ #### `SpeechToTextProcessor` class
50
+ - ประมวลผล Speech-to-Text ด้วย Whisper
51
+ - รองรับการแปลภาษา
52
+ - จัดการ model configurations
53
+
54
+ #### `MultiSpeechProcessor` class
55
+ - ประมวลผล Multi-Speech generation
56
+ - จัดการ speech types และ segments
57
+ - Segment editing และ regeneration
58
+ - Silence management
59
+
60
+ #### `UIComponents` class
61
+ - สร้าง Gradio components
62
+ - จัดการ speech type management
63
+ - แยก UI logic ออกจาก business logic
64
+
65
+ #### `F5TTSWebUI` class
66
+ - Main application class
67
+ - ประสานงานระหว่าง components
68
+ - Event handling และ binding
69
+
70
+ ## ประโยชน์ของการ Refactoring
71
+
72
+ ### 1. **Maintainability (ความง่ายในการดูแลรักษา)**
73
+ - โค้ดแต่ละส่วนมีหน้าที่ชัดเจน
74
+ - แก้ไขส่วนใดส่วนหนึ่งไม่กระทบส่วนอื่น
75
+ - ง่ายต่อการค้นหาและแก้ไข bugs
76
+
77
+ ### 2. **Reusability (การใช้ซ้ำได้)**
78
+ - Classes สามารถนำไปใช้ในโปรเจ็กต์อื่นได้
79
+ - Components สามารถใช้งานแยกจากกันได้
80
+
81
+ ### 3. **Testability (การทดสอบได้)**
82
+ - สามารถเขียน unit tests สำหรับแต่ละ class ได้
83
+ - Mock dependencies ได้ง่าย
84
+ - Isolated testing สำหรับแต่ละ functionality
85
+
86
+ ### 4. **Scalability (การขยายได้)**
87
+ - เพิ่ม features ใหม่ได้ง่าย
88
+ - เปลี่ยนแปลง implementation ได้โดยไม่กระทบส่วนอื่น
89
+ - รองรับการเพิ่ม model types ใหม่
90
+
91
+ ### 5. **Readability (ความอ่านง่าย)**
92
+ - โค้ดสั้นลงในแต่ละไฟล์
93
+ - ชื่อ class และ method สื่อความหมายชัดเจน
94
+ - Documentation ครบ���้วน
95
+
96
+ ## วิธีการใช้งานหลังการ Refactoring
97
+
98
+ ### การรันแอพพลิเคชั่น
99
+ ```python
100
+ from f5_tts.f5_tts_webui import main
101
+
102
+ # หรือ
103
+ python -m f5_tts.f5_tts_webui --share
104
+ ```
105
+
106
+ ### การใช้งาน Components แยกต่างหาก
107
+ ```python
108
+ from f5_tts.model_manager import ModelManager
109
+ from f5_tts.tts_processor import TTSProcessor
110
+
111
+ # สร้าง model manager
112
+ model_manager = ModelManager()
113
+
114
+ # สร้าง TTS processor
115
+ tts_processor = TTSProcessor(model_manager)
116
+
117
+ # ใช้งาน TTS
118
+ result = tts_processor.infer_tts(
119
+ ref_audio="path/to/audio.wav",
120
+ ref_text="เสียงต้นฉบับ",
121
+ gen_text="ข้อความที่จะสร้าง"
122
+ )
123
+ ```
124
+
125
+ ## การเปลี่ยนแปลงที่สำคัญ
126
+
127
+ ### 1. **ไม่มีตัวแปร Global แล้ว**
128
+ - `f5tts_model` และ `vocoder` ถูกย้ายไปอยู่ใน `ModelManager`
129
+ - ใช้ dependency injection แทน global state
130
+
131
+ ### 2. **Error Handling ที่ดีขึ้น**
132
+ - ตรวจสอบ errors ใน model loading
133
+ - Graceful handling สำหรับ invalid inputs
134
+
135
+ ### 3. **Configuration Management**
136
+ - Constants ทั้งหมดอยู่ในที่เดียว
137
+ - ง่ายต่อการเปลี่ยนแปลง configuration
138
+
139
+ ### 4. **Type Safety**
140
+ - ใช้ type hints ในฟังก์ชันสำคัญ
141
+ - ลดความเสี่ยงของ runtime errors
142
+
143
+ ## การทดสอบ
144
+
145
+ หลังจากการ refactoring สามารถเขียนและรัน tests ได้:
146
+
147
+ ```python
148
+ # ตัวอย่าง unit test
149
+ def test_model_manager():
150
+ manager = ModelManager()
151
+ assert manager.get_model() is not None
152
+ assert manager.get_vocoder() is not None
153
+
154
+ def test_tts_processor():
155
+ model_manager = ModelManager()
156
+ processor = TTSProcessor(model_manager)
157
+ # Test TTS functionality
158
+ ```
159
+
160
+ ## อนาคต
161
+
162
+ การ refactoring นี้เป็นฐานสำหรับการพัฒนาต่อไปในอนาคต:
163
+
164
+ 1. **เพิ่ม Model Types ใหม่**: ง่ายต่อการเพิ่ม support สำหรับโมเดลใหม่
165
+ 2. **API Endpoints**: สามารถสร้าง REST API ได้ง่าย
166
+ 3. **Batch Processing**: เพิ่ม functionality สำหรับประมวลผลหลายไฟล์
167
+ 4. **Advanced Features**: เพิ่ม features เช่น voice cloning, style transfer
168
+ 5. **Performance Optimization**: ปรับปรุงประสิทธิภาพได้ง่าย
169
+
170
+ ## สรุป
171
+
172
+ การ refactoring นี้ทำให้โค้ดมีคุณภาพดีขึ้นอย่างมาก พร้อมสำหรับการพัฒนาและขยายในอนาคต ในขณะที่ยังคงความสามารถเดิมทุกอย่างไว้
app-webui.bat ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+
3
+ set "current_dir=%CD%"
4
+
5
+ call venv/scripts/activate
6
+
7
+ python src/f5_tts/f5_tts_webui.py
8
+
9
+ pause
app.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
+
6
+ demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ demo.launch()
ckpts/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Pretrained model ckpts. https://huggingface.co/SWivid/F5-TTS
3
+
4
+ ```
5
+ ckpts/
6
+ E2TTS_Base/
7
+ model_1200000.pt
8
+ F5TTS_Base/
9
+ model_1200000.pt
10
+ ```
data/Emilia_ZH_EN_pinyin/vocab.txt ADDED
@@ -0,0 +1,2586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ !
3
+ "
4
+ #
5
+ $
6
+ %
7
+ &
8
+ '
9
+ (
10
+ )
11
+ *
12
+ +
13
+ ,
14
+ -
15
+ .
16
+ /
17
+ 0
18
+ 1
19
+ 2
20
+ 3
21
+ 4
22
+ 5
23
+ 6
24
+ 7
25
+ 8
26
+ 9
27
+ :
28
+ ;
29
+ =
30
+ >
31
+ ?
32
+ @
33
+ A
34
+ B
35
+ C
36
+ D
37
+ E
38
+ F
39
+ G
40
+ H
41
+ I
42
+ J
43
+ K
44
+ L
45
+ M
46
+ N
47
+ O
48
+ P
49
+ Q
50
+ R
51
+ S
52
+ T
53
+ U
54
+ V
55
+ W
56
+ X
57
+ Y
58
+ Z
59
+ [
60
+ \
61
+ ]
62
+ _
63
+ a
64
+ a1
65
+ ai1
66
+ ai2
67
+ ai3
68
+ ai4
69
+ an1
70
+ an3
71
+ an4
72
+ ang1
73
+ ang2
74
+ ang4
75
+ ao1
76
+ ao2
77
+ ao3
78
+ ao4
79
+ b
80
+ ba
81
+ ba1
82
+ ba2
83
+ ba3
84
+ ba4
85
+ bai1
86
+ bai2
87
+ bai3
88
+ bai4
89
+ ban1
90
+ ban2
91
+ ban3
92
+ ban4
93
+ bang1
94
+ bang2
95
+ bang3
96
+ bang4
97
+ bao1
98
+ bao2
99
+ bao3
100
+ bao4
101
+ bei
102
+ bei1
103
+ bei2
104
+ bei3
105
+ bei4
106
+ ben1
107
+ ben2
108
+ ben3
109
+ ben4
110
+ beng
111
+ beng1
112
+ beng2
113
+ beng3
114
+ beng4
115
+ bi1
116
+ bi2
117
+ bi3
118
+ bi4
119
+ bian1
120
+ bian2
121
+ bian3
122
+ bian4
123
+ biao1
124
+ biao2
125
+ biao3
126
+ bie1
127
+ bie2
128
+ bie3
129
+ bie4
130
+ bin1
131
+ bin4
132
+ bing1
133
+ bing2
134
+ bing3
135
+ bing4
136
+ bo
137
+ bo1
138
+ bo2
139
+ bo3
140
+ bo4
141
+ bu2
142
+ bu3
143
+ bu4
144
+ c
145
+ ca1
146
+ cai1
147
+ cai2
148
+ cai3
149
+ cai4
150
+ can1
151
+ can2
152
+ can3
153
+ can4
154
+ cang1
155
+ cang2
156
+ cao1
157
+ cao2
158
+ cao3
159
+ ce4
160
+ cen1
161
+ cen2
162
+ ceng1
163
+ ceng2
164
+ ceng4
165
+ cha1
166
+ cha2
167
+ cha3
168
+ cha4
169
+ chai1
170
+ chai2
171
+ chan1
172
+ chan2
173
+ chan3
174
+ chan4
175
+ chang1
176
+ chang2
177
+ chang3
178
+ chang4
179
+ chao1
180
+ chao2
181
+ chao3
182
+ che1
183
+ che2
184
+ che3
185
+ che4
186
+ chen1
187
+ chen2
188
+ chen3
189
+ chen4
190
+ cheng1
191
+ cheng2
192
+ cheng3
193
+ cheng4
194
+ chi1
195
+ chi2
196
+ chi3
197
+ chi4
198
+ chong1
199
+ chong2
200
+ chong3
201
+ chong4
202
+ chou1
203
+ chou2
204
+ chou3
205
+ chou4
206
+ chu1
207
+ chu2
208
+ chu3
209
+ chu4
210
+ chua1
211
+ chuai1
212
+ chuai2
213
+ chuai3
214
+ chuai4
215
+ chuan1
216
+ chuan2
217
+ chuan3
218
+ chuan4
219
+ chuang1
220
+ chuang2
221
+ chuang3
222
+ chuang4
223
+ chui1
224
+ chui2
225
+ chun1
226
+ chun2
227
+ chun3
228
+ chuo1
229
+ chuo4
230
+ ci1
231
+ ci2
232
+ ci3
233
+ ci4
234
+ cong1
235
+ cong2
236
+ cou4
237
+ cu1
238
+ cu4
239
+ cuan1
240
+ cuan2
241
+ cuan4
242
+ cui1
243
+ cui3
244
+ cui4
245
+ cun1
246
+ cun2
247
+ cun4
248
+ cuo1
249
+ cuo2
250
+ cuo4
251
+ d
252
+ da
253
+ da1
254
+ da2
255
+ da3
256
+ da4
257
+ dai1
258
+ dai2
259
+ dai3
260
+ dai4
261
+ dan1
262
+ dan2
263
+ dan3
264
+ dan4
265
+ dang1
266
+ dang2
267
+ dang3
268
+ dang4
269
+ dao1
270
+ dao2
271
+ dao3
272
+ dao4
273
+ de
274
+ de1
275
+ de2
276
+ dei3
277
+ den4
278
+ deng1
279
+ deng2
280
+ deng3
281
+ deng4
282
+ di1
283
+ di2
284
+ di3
285
+ di4
286
+ dia3
287
+ dian1
288
+ dian2
289
+ dian3
290
+ dian4
291
+ diao1
292
+ diao3
293
+ diao4
294
+ die1
295
+ die2
296
+ die4
297
+ ding1
298
+ ding2
299
+ ding3
300
+ ding4
301
+ diu1
302
+ dong1
303
+ dong3
304
+ dong4
305
+ dou1
306
+ dou2
307
+ dou3
308
+ dou4
309
+ du1
310
+ du2
311
+ du3
312
+ du4
313
+ duan1
314
+ duan2
315
+ duan3
316
+ duan4
317
+ dui1
318
+ dui4
319
+ dun1
320
+ dun3
321
+ dun4
322
+ duo1
323
+ duo2
324
+ duo3
325
+ duo4
326
+ e
327
+ e1
328
+ e2
329
+ e3
330
+ e4
331
+ ei2
332
+ en1
333
+ en4
334
+ er
335
+ er2
336
+ er3
337
+ er4
338
+ f
339
+ fa1
340
+ fa2
341
+ fa3
342
+ fa4
343
+ fan1
344
+ fan2
345
+ fan3
346
+ fan4
347
+ fang1
348
+ fang2
349
+ fang3
350
+ fang4
351
+ fei1
352
+ fei2
353
+ fei3
354
+ fei4
355
+ fen1
356
+ fen2
357
+ fen3
358
+ fen4
359
+ feng1
360
+ feng2
361
+ feng3
362
+ feng4
363
+ fo2
364
+ fou2
365
+ fou3
366
+ fu1
367
+ fu2
368
+ fu3
369
+ fu4
370
+ g
371
+ ga1
372
+ ga2
373
+ ga3
374
+ ga4
375
+ gai1
376
+ gai2
377
+ gai3
378
+ gai4
379
+ gan1
380
+ gan2
381
+ gan3
382
+ gan4
383
+ gang1
384
+ gang2
385
+ gang3
386
+ gang4
387
+ gao1
388
+ gao2
389
+ gao3
390
+ gao4
391
+ ge1
392
+ ge2
393
+ ge3
394
+ ge4
395
+ gei2
396
+ gei3
397
+ gen1
398
+ gen2
399
+ gen3
400
+ gen4
401
+ geng1
402
+ geng3
403
+ geng4
404
+ gong1
405
+ gong3
406
+ gong4
407
+ gou1
408
+ gou2
409
+ gou3
410
+ gou4
411
+ gu
412
+ gu1
413
+ gu2
414
+ gu3
415
+ gu4
416
+ gua1
417
+ gua2
418
+ gua3
419
+ gua4
420
+ guai1
421
+ guai2
422
+ guai3
423
+ guai4
424
+ guan1
425
+ guan2
426
+ guan3
427
+ guan4
428
+ guang1
429
+ guang2
430
+ guang3
431
+ guang4
432
+ gui1
433
+ gui2
434
+ gui3
435
+ gui4
436
+ gun3
437
+ gun4
438
+ guo1
439
+ guo2
440
+ guo3
441
+ guo4
442
+ h
443
+ ha1
444
+ ha2
445
+ ha3
446
+ hai1
447
+ hai2
448
+ hai3
449
+ hai4
450
+ han1
451
+ han2
452
+ han3
453
+ han4
454
+ hang1
455
+ hang2
456
+ hang4
457
+ hao1
458
+ hao2
459
+ hao3
460
+ hao4
461
+ he1
462
+ he2
463
+ he4
464
+ hei1
465
+ hen2
466
+ hen3
467
+ hen4
468
+ heng1
469
+ heng2
470
+ heng4
471
+ hong1
472
+ hong2
473
+ hong3
474
+ hong4
475
+ hou1
476
+ hou2
477
+ hou3
478
+ hou4
479
+ hu1
480
+ hu2
481
+ hu3
482
+ hu4
483
+ hua1
484
+ hua2
485
+ hua4
486
+ huai2
487
+ huai4
488
+ huan1
489
+ huan2
490
+ huan3
491
+ huan4
492
+ huang1
493
+ huang2
494
+ huang3
495
+ huang4
496
+ hui1
497
+ hui2
498
+ hui3
499
+ hui4
500
+ hun1
501
+ hun2
502
+ hun4
503
+ huo
504
+ huo1
505
+ huo2
506
+ huo3
507
+ huo4
508
+ i
509
+ j
510
+ ji1
511
+ ji2
512
+ ji3
513
+ ji4
514
+ jia
515
+ jia1
516
+ jia2
517
+ jia3
518
+ jia4
519
+ jian1
520
+ jian2
521
+ jian3
522
+ jian4
523
+ jiang1
524
+ jiang2
525
+ jiang3
526
+ jiang4
527
+ jiao1
528
+ jiao2
529
+ jiao3
530
+ jiao4
531
+ jie1
532
+ jie2
533
+ jie3
534
+ jie4
535
+ jin1
536
+ jin2
537
+ jin3
538
+ jin4
539
+ jing1
540
+ jing2
541
+ jing3
542
+ jing4
543
+ jiong3
544
+ jiu1
545
+ jiu2
546
+ jiu3
547
+ jiu4
548
+ ju1
549
+ ju2
550
+ ju3
551
+ ju4
552
+ juan1
553
+ juan2
554
+ juan3
555
+ juan4
556
+ jue1
557
+ jue2
558
+ jue4
559
+ jun1
560
+ jun4
561
+ k
562
+ ka1
563
+ ka2
564
+ ka3
565
+ kai1
566
+ kai2
567
+ kai3
568
+ kai4
569
+ kan1
570
+ kan2
571
+ kan3
572
+ kan4
573
+ kang1
574
+ kang2
575
+ kang4
576
+ kao1
577
+ kao2
578
+ kao3
579
+ kao4
580
+ ke1
581
+ ke2
582
+ ke3
583
+ ke4
584
+ ken3
585
+ keng1
586
+ kong1
587
+ kong3
588
+ kong4
589
+ kou1
590
+ kou2
591
+ kou3
592
+ kou4
593
+ ku1
594
+ ku2
595
+ ku3
596
+ ku4
597
+ kua1
598
+ kua3
599
+ kua4
600
+ kuai3
601
+ kuai4
602
+ kuan1
603
+ kuan2
604
+ kuan3
605
+ kuang1
606
+ kuang2
607
+ kuang4
608
+ kui1
609
+ kui2
610
+ kui3
611
+ kui4
612
+ kun1
613
+ kun3
614
+ kun4
615
+ kuo4
616
+ l
617
+ la
618
+ la1
619
+ la2
620
+ la3
621
+ la4
622
+ lai2
623
+ lai4
624
+ lan2
625
+ lan3
626
+ lan4
627
+ lang1
628
+ lang2
629
+ lang3
630
+ lang4
631
+ lao1
632
+ lao2
633
+ lao3
634
+ lao4
635
+ le
636
+ le1
637
+ le4
638
+ lei
639
+ lei1
640
+ lei2
641
+ lei3
642
+ lei4
643
+ leng1
644
+ leng2
645
+ leng3
646
+ leng4
647
+ li
648
+ li1
649
+ li2
650
+ li3
651
+ li4
652
+ lia3
653
+ lian2
654
+ lian3
655
+ lian4
656
+ liang2
657
+ liang3
658
+ liang4
659
+ liao1
660
+ liao2
661
+ liao3
662
+ liao4
663
+ lie1
664
+ lie2
665
+ lie3
666
+ lie4
667
+ lin1
668
+ lin2
669
+ lin3
670
+ lin4
671
+ ling2
672
+ ling3
673
+ ling4
674
+ liu1
675
+ liu2
676
+ liu3
677
+ liu4
678
+ long1
679
+ long2
680
+ long3
681
+ long4
682
+ lou1
683
+ lou2
684
+ lou3
685
+ lou4
686
+ lu1
687
+ lu2
688
+ lu3
689
+ lu4
690
+ luan2
691
+ luan3
692
+ luan4
693
+ lun1
694
+ lun2
695
+ lun4
696
+ luo1
697
+ luo2
698
+ luo3
699
+ luo4
700
+ lv2
701
+ lv3
702
+ lv4
703
+ lve3
704
+ lve4
705
+ m
706
+ ma
707
+ ma1
708
+ ma2
709
+ ma3
710
+ ma4
711
+ mai2
712
+ mai3
713
+ mai4
714
+ man1
715
+ man2
716
+ man3
717
+ man4
718
+ mang2
719
+ mang3
720
+ mao1
721
+ mao2
722
+ mao3
723
+ mao4
724
+ me
725
+ mei2
726
+ mei3
727
+ mei4
728
+ men
729
+ men1
730
+ men2
731
+ men4
732
+ meng
733
+ meng1
734
+ meng2
735
+ meng3
736
+ meng4
737
+ mi1
738
+ mi2
739
+ mi3
740
+ mi4
741
+ mian2
742
+ mian3
743
+ mian4
744
+ miao1
745
+ miao2
746
+ miao3
747
+ miao4
748
+ mie1
749
+ mie4
750
+ min2
751
+ min3
752
+ ming2
753
+ ming3
754
+ ming4
755
+ miu4
756
+ mo1
757
+ mo2
758
+ mo3
759
+ mo4
760
+ mou1
761
+ mou2
762
+ mou3
763
+ mu2
764
+ mu3
765
+ mu4
766
+ n
767
+ n2
768
+ na1
769
+ na2
770
+ na3
771
+ na4
772
+ nai2
773
+ nai3
774
+ nai4
775
+ nan1
776
+ nan2
777
+ nan3
778
+ nan4
779
+ nang1
780
+ nang2
781
+ nang3
782
+ nao1
783
+ nao2
784
+ nao3
785
+ nao4
786
+ ne
787
+ ne2
788
+ ne4
789
+ nei3
790
+ nei4
791
+ nen4
792
+ neng2
793
+ ni1
794
+ ni2
795
+ ni3
796
+ ni4
797
+ nian1
798
+ nian2
799
+ nian3
800
+ nian4
801
+ niang2
802
+ niang4
803
+ niao2
804
+ niao3
805
+ niao4
806
+ nie1
807
+ nie4
808
+ nin2
809
+ ning2
810
+ ning3
811
+ ning4
812
+ niu1
813
+ niu2
814
+ niu3
815
+ niu4
816
+ nong2
817
+ nong4
818
+ nou4
819
+ nu2
820
+ nu3
821
+ nu4
822
+ nuan3
823
+ nuo2
824
+ nuo4
825
+ nv2
826
+ nv3
827
+ nve4
828
+ o
829
+ o1
830
+ o2
831
+ ou1
832
+ ou2
833
+ ou3
834
+ ou4
835
+ p
836
+ pa1
837
+ pa2
838
+ pa4
839
+ pai1
840
+ pai2
841
+ pai3
842
+ pai4
843
+ pan1
844
+ pan2
845
+ pan4
846
+ pang1
847
+ pang2
848
+ pang4
849
+ pao1
850
+ pao2
851
+ pao3
852
+ pao4
853
+ pei1
854
+ pei2
855
+ pei4
856
+ pen1
857
+ pen2
858
+ pen4
859
+ peng1
860
+ peng2
861
+ peng3
862
+ peng4
863
+ pi1
864
+ pi2
865
+ pi3
866
+ pi4
867
+ pian1
868
+ pian2
869
+ pian4
870
+ piao1
871
+ piao2
872
+ piao3
873
+ piao4
874
+ pie1
875
+ pie2
876
+ pie3
877
+ pin1
878
+ pin2
879
+ pin3
880
+ pin4
881
+ ping1
882
+ ping2
883
+ po1
884
+ po2
885
+ po3
886
+ po4
887
+ pou1
888
+ pu1
889
+ pu2
890
+ pu3
891
+ pu4
892
+ q
893
+ qi1
894
+ qi2
895
+ qi3
896
+ qi4
897
+ qia1
898
+ qia3
899
+ qia4
900
+ qian1
901
+ qian2
902
+ qian3
903
+ qian4
904
+ qiang1
905
+ qiang2
906
+ qiang3
907
+ qiang4
908
+ qiao1
909
+ qiao2
910
+ qiao3
911
+ qiao4
912
+ qie1
913
+ qie2
914
+ qie3
915
+ qie4
916
+ qin1
917
+ qin2
918
+ qin3
919
+ qin4
920
+ qing1
921
+ qing2
922
+ qing3
923
+ qing4
924
+ qiong1
925
+ qiong2
926
+ qiu1
927
+ qiu2
928
+ qiu3
929
+ qu1
930
+ qu2
931
+ qu3
932
+ qu4
933
+ quan1
934
+ quan2
935
+ quan3
936
+ quan4
937
+ que1
938
+ que2
939
+ que4
940
+ qun2
941
+ r
942
+ ran2
943
+ ran3
944
+ rang1
945
+ rang2
946
+ rang3
947
+ rang4
948
+ rao2
949
+ rao3
950
+ rao4
951
+ re2
952
+ re3
953
+ re4
954
+ ren2
955
+ ren3
956
+ ren4
957
+ reng1
958
+ reng2
959
+ ri4
960
+ rong1
961
+ rong2
962
+ rong3
963
+ rou2
964
+ rou4
965
+ ru2
966
+ ru3
967
+ ru4
968
+ ruan2
969
+ ruan3
970
+ rui3
971
+ rui4
972
+ run4
973
+ ruo4
974
+ s
975
+ sa1
976
+ sa2
977
+ sa3
978
+ sa4
979
+ sai1
980
+ sai4
981
+ san1
982
+ san2
983
+ san3
984
+ san4
985
+ sang1
986
+ sang3
987
+ sang4
988
+ sao1
989
+ sao2
990
+ sao3
991
+ sao4
992
+ se4
993
+ sen1
994
+ seng1
995
+ sha1
996
+ sha2
997
+ sha3
998
+ sha4
999
+ shai1
1000
+ shai2
1001
+ shai3
1002
+ shai4
1003
+ shan1
1004
+ shan3
1005
+ shan4
1006
+ shang
1007
+ shang1
1008
+ shang3
1009
+ shang4
1010
+ shao1
1011
+ shao2
1012
+ shao3
1013
+ shao4
1014
+ she1
1015
+ she2
1016
+ she3
1017
+ she4
1018
+ shei2
1019
+ shen1
1020
+ shen2
1021
+ shen3
1022
+ shen4
1023
+ sheng1
1024
+ sheng2
1025
+ sheng3
1026
+ sheng4
1027
+ shi
1028
+ shi1
1029
+ shi2
1030
+ shi3
1031
+ shi4
1032
+ shou1
1033
+ shou2
1034
+ shou3
1035
+ shou4
1036
+ shu1
1037
+ shu2
1038
+ shu3
1039
+ shu4
1040
+ shua1
1041
+ shua2
1042
+ shua3
1043
+ shua4
1044
+ shuai1
1045
+ shuai3
1046
+ shuai4
1047
+ shuan1
1048
+ shuan4
1049
+ shuang1
1050
+ shuang3
1051
+ shui2
1052
+ shui3
1053
+ shui4
1054
+ shun3
1055
+ shun4
1056
+ shuo1
1057
+ shuo4
1058
+ si1
1059
+ si2
1060
+ si3
1061
+ si4
1062
+ song1
1063
+ song3
1064
+ song4
1065
+ sou1
1066
+ sou3
1067
+ sou4
1068
+ su1
1069
+ su2
1070
+ su4
1071
+ suan1
1072
+ suan4
1073
+ sui1
1074
+ sui2
1075
+ sui3
1076
+ sui4
1077
+ sun1
1078
+ sun3
1079
+ suo
1080
+ suo1
1081
+ suo2
1082
+ suo3
1083
+ t
1084
+ ta1
1085
+ ta2
1086
+ ta3
1087
+ ta4
1088
+ tai1
1089
+ tai2
1090
+ tai4
1091
+ tan1
1092
+ tan2
1093
+ tan3
1094
+ tan4
1095
+ tang1
1096
+ tang2
1097
+ tang3
1098
+ tang4
1099
+ tao1
1100
+ tao2
1101
+ tao3
1102
+ tao4
1103
+ te4
1104
+ teng2
1105
+ ti1
1106
+ ti2
1107
+ ti3
1108
+ ti4
1109
+ tian1
1110
+ tian2
1111
+ tian3
1112
+ tiao1
1113
+ tiao2
1114
+ tiao3
1115
+ tiao4
1116
+ tie1
1117
+ tie2
1118
+ tie3
1119
+ tie4
1120
+ ting1
1121
+ ting2
1122
+ ting3
1123
+ tong1
1124
+ tong2
1125
+ tong3
1126
+ tong4
1127
+ tou
1128
+ tou1
1129
+ tou2
1130
+ tou4
1131
+ tu1
1132
+ tu2
1133
+ tu3
1134
+ tu4
1135
+ tuan1
1136
+ tuan2
1137
+ tui1
1138
+ tui2
1139
+ tui3
1140
+ tui4
1141
+ tun1
1142
+ tun2
1143
+ tun4
1144
+ tuo1
1145
+ tuo2
1146
+ tuo3
1147
+ tuo4
1148
+ u
1149
+ v
1150
+ w
1151
+ wa
1152
+ wa1
1153
+ wa2
1154
+ wa3
1155
+ wa4
1156
+ wai1
1157
+ wai3
1158
+ wai4
1159
+ wan1
1160
+ wan2
1161
+ wan3
1162
+ wan4
1163
+ wang1
1164
+ wang2
1165
+ wang3
1166
+ wang4
1167
+ wei1
1168
+ wei2
1169
+ wei3
1170
+ wei4
1171
+ wen1
1172
+ wen2
1173
+ wen3
1174
+ wen4
1175
+ weng1
1176
+ weng4
1177
+ wo1
1178
+ wo2
1179
+ wo3
1180
+ wo4
1181
+ wu1
1182
+ wu2
1183
+ wu3
1184
+ wu4
1185
+ x
1186
+ xi1
1187
+ xi2
1188
+ xi3
1189
+ xi4
1190
+ xia1
1191
+ xia2
1192
+ xia4
1193
+ xian1
1194
+ xian2
1195
+ xian3
1196
+ xian4
1197
+ xiang1
1198
+ xiang2
1199
+ xiang3
1200
+ xiang4
1201
+ xiao1
1202
+ xiao2
1203
+ xiao3
1204
+ xiao4
1205
+ xie1
1206
+ xie2
1207
+ xie3
1208
+ xie4
1209
+ xin1
1210
+ xin2
1211
+ xin4
1212
+ xing1
1213
+ xing2
1214
+ xing3
1215
+ xing4
1216
+ xiong1
1217
+ xiong2
1218
+ xiu1
1219
+ xiu3
1220
+ xiu4
1221
+ xu
1222
+ xu1
1223
+ xu2
1224
+ xu3
1225
+ xu4
1226
+ xuan1
1227
+ xuan2
1228
+ xuan3
1229
+ xuan4
1230
+ xue1
1231
+ xue2
1232
+ xue3
1233
+ xue4
1234
+ xun1
1235
+ xun2
1236
+ xun4
1237
+ y
1238
+ ya
1239
+ ya1
1240
+ ya2
1241
+ ya3
1242
+ ya4
1243
+ yan1
1244
+ yan2
1245
+ yan3
1246
+ yan4
1247
+ yang1
1248
+ yang2
1249
+ yang3
1250
+ yang4
1251
+ yao1
1252
+ yao2
1253
+ yao3
1254
+ yao4
1255
+ ye1
1256
+ ye2
1257
+ ye3
1258
+ ye4
1259
+ yi
1260
+ yi1
1261
+ yi2
1262
+ yi3
1263
+ yi4
1264
+ yin1
1265
+ yin2
1266
+ yin3
1267
+ yin4
1268
+ ying1
1269
+ ying2
1270
+ ying3
1271
+ ying4
1272
+ yo1
1273
+ yong1
1274
+ yong2
1275
+ yong3
1276
+ yong4
1277
+ you1
1278
+ you2
1279
+ you3
1280
+ you4
1281
+ yu1
1282
+ yu2
1283
+ yu3
1284
+ yu4
1285
+ yuan1
1286
+ yuan2
1287
+ yuan3
1288
+ yuan4
1289
+ yue1
1290
+ yue4
1291
+ yun1
1292
+ yun2
1293
+ yun3
1294
+ yun4
1295
+ z
1296
+ za1
1297
+ za2
1298
+ za3
1299
+ zai1
1300
+ zai3
1301
+ zai4
1302
+ zan1
1303
+ zan2
1304
+ zan3
1305
+ zan4
1306
+ zang1
1307
+ zang4
1308
+ zao1
1309
+ zao2
1310
+ zao3
1311
+ zao4
1312
+ ze2
1313
+ ze4
1314
+ zei2
1315
+ zen3
1316
+ zeng1
1317
+ zeng4
1318
+ zha1
1319
+ zha2
1320
+ zha3
1321
+ zha4
1322
+ zhai1
1323
+ zhai2
1324
+ zhai3
1325
+ zhai4
1326
+ zhan1
1327
+ zhan2
1328
+ zhan3
1329
+ zhan4
1330
+ zhang1
1331
+ zhang2
1332
+ zhang3
1333
+ zhang4
1334
+ zhao1
1335
+ zhao2
1336
+ zhao3
1337
+ zhao4
1338
+ zhe
1339
+ zhe1
1340
+ zhe2
1341
+ zhe3
1342
+ zhe4
1343
+ zhen1
1344
+ zhen2
1345
+ zhen3
1346
+ zhen4
1347
+ zheng1
1348
+ zheng2
1349
+ zheng3
1350
+ zheng4
1351
+ zhi1
1352
+ zhi2
1353
+ zhi3
1354
+ zhi4
1355
+ zhong1
1356
+ zhong2
1357
+ zhong3
1358
+ zhong4
1359
+ zhou1
1360
+ zhou2
1361
+ zhou3
1362
+ zhou4
1363
+ zhu1
1364
+ zhu2
1365
+ zhu3
1366
+ zhu4
1367
+ zhua1
1368
+ zhua2
1369
+ zhua3
1370
+ zhuai1
1371
+ zhuai3
1372
+ zhuai4
1373
+ zhuan1
1374
+ zhuan2
1375
+ zhuan3
1376
+ zhuan4
1377
+ zhuang1
1378
+ zhuang4
1379
+ zhui1
1380
+ zhui4
1381
+ zhun1
1382
+ zhun2
1383
+ zhun3
1384
+ zhuo1
1385
+ zhuo2
1386
+ zi
1387
+ zi1
1388
+ zi2
1389
+ zi3
1390
+ zi4
1391
+ zong1
1392
+ zong2
1393
+ zong3
1394
+ zong4
1395
+ zou1
1396
+ zou2
1397
+ zou3
1398
+ zou4
1399
+ zu1
1400
+ zu2
1401
+ zu3
1402
+ zuan1
1403
+ zuan3
1404
+ zuan4
1405
+ zui2
1406
+ zui3
1407
+ zui4
1408
+ zun1
1409
+ zuo
1410
+ zuo1
1411
+ zuo2
1412
+ zuo3
1413
+ zuo4
1414
+ {
1415
+ ~
1416
+ ¡
1417
+ ¢
1418
+ £
1419
+ ¥
1420
+ §
1421
+ ¨
1422
+ ©
1423
+ «
1424
+ ®
1425
+ ¯
1426
+ °
1427
+ ±
1428
+ ²
1429
+ ³
1430
+ ´
1431
+ µ
1432
+ ·
1433
+ ¹
1434
+ º
1435
+ »
1436
+ ¼
1437
+ ½
1438
+ ¾
1439
+ ¿
1440
+ À
1441
+ Á
1442
+ Â
1443
+ Ã
1444
+ Ä
1445
+ Å
1446
+ Æ
1447
+ Ç
1448
+ È
1449
+ É
1450
+ Ê
1451
+ Í
1452
+ Î
1453
+ Ñ
1454
+ Ó
1455
+ Ö
1456
+ ×
1457
+ Ø
1458
+ Ú
1459
+ Ü
1460
+ Ý
1461
+ Þ
1462
+ ß
1463
+ à
1464
+ á
1465
+ â
1466
+ ã
1467
+ ä
1468
+ å
1469
+ æ
1470
+ ç
1471
+ è
1472
+ é
1473
+ ê
1474
+ ë
1475
+ ì
1476
+ í
1477
+ î
1478
+ ï
1479
+ ð
1480
+ ñ
1481
+ ò
1482
+ ó
1483
+ ô
1484
+ õ
1485
+ ö
1486
+ ø
1487
+ ù
1488
+ ú
1489
+ û
1490
+ ü
1491
+ ý
1492
+ Ā
1493
+ ā
1494
+ ă
1495
+ ą
1496
+ ć
1497
+ Č
1498
+ č
1499
+ Đ
1500
+ đ
1501
+ ē
1502
+ ė
1503
+ ę
1504
+ ě
1505
+ ĝ
1506
+ ğ
1507
+ ħ
1508
+ ī
1509
+ į
1510
+ İ
1511
+ ı
1512
+ Ł
1513
+ ł
1514
+ ń
1515
+ ņ
1516
+ ň
1517
+ ŋ
1518
+ Ō
1519
+ ō
1520
+ ő
1521
+ œ
1522
+ ř
1523
+ Ś
1524
+ ś
1525
+ Ş
1526
+ ş
1527
+ Š
1528
+ š
1529
+ Ť
1530
+ ť
1531
+ ũ
1532
+ ū
1533
+ ź
1534
+ Ż
1535
+ ż
1536
+ Ž
1537
+ ž
1538
+ ơ
1539
+ ư
1540
+ ǎ
1541
+ ǐ
1542
+ ǒ
1543
+ ǔ
1544
+ ǚ
1545
+ ș
1546
+ ț
1547
+ ɑ
1548
+ ɔ
1549
+ ɕ
1550
+ ə
1551
+ ɛ
1552
+ ɜ
1553
+ ɡ
1554
+ ɣ
1555
+ ɪ
1556
+ ɫ
1557
+ ɴ
1558
+ ɹ
1559
+ ɾ
1560
+ ʃ
1561
+ ʊ
1562
+ ʌ
1563
+ ʒ
1564
+ ʔ
1565
+ ʰ
1566
+ ʷ
1567
+ ʻ
1568
+ ʾ
1569
+ ʿ
1570
+ ˈ
1571
+ ː
1572
+ ˙
1573
+ ˜
1574
+ ˢ
1575
+ ́
1576
+ ̅
1577
+ Α
1578
+ Β
1579
+ Δ
1580
+ Ε
1581
+ Θ
1582
+ Κ
1583
+ Λ
1584
+ Μ
1585
+ Ξ
1586
+ Π
1587
+ Σ
1588
+ Τ
1589
+ Φ
1590
+ Χ
1591
+ Ψ
1592
+ Ω
1593
+ ά
1594
+ έ
1595
+ ή
1596
+ ί
1597
+ α
1598
+ β
1599
+ γ
1600
+ δ
1601
+ ε
1602
+ ζ
1603
+ η
1604
+ θ
1605
+ ι
1606
+ κ
1607
+ λ
1608
+ μ
1609
+ ν
1610
+ ξ
1611
+ ο
1612
+ π
1613
+ ρ
1614
+ ς
1615
+ σ
1616
+ τ
1617
+ υ
1618
+ φ
1619
+ χ
1620
+ ψ
1621
+ ω
1622
+ ϊ
1623
+ ό
1624
+ ύ
1625
+ ώ
1626
+ ϕ
1627
+ ϵ
1628
+ Ё
1629
+ А
1630
+ Б
1631
+ В
1632
+ Г
1633
+ Д
1634
+ Е
1635
+ Ж
1636
+ З
1637
+ И
1638
+ Й
1639
+ К
1640
+ Л
1641
+ М
1642
+ Н
1643
+ О
1644
+ П
1645
+ Р
1646
+ С
1647
+ Т
1648
+ У
1649
+ Ф
1650
+ Х
1651
+ Ц
1652
+ Ч
1653
+ Ш
1654
+ Щ
1655
+ Ы
1656
+ Ь
1657
+ Э
1658
+ Ю
1659
+ Я
1660
+ а
1661
+ б
1662
+ в
1663
+ г
1664
+ д
1665
+ е
1666
+ ж
1667
+ з
1668
+ и
1669
+ й
1670
+ к
1671
+ л
1672
+ м
1673
+ н
1674
+ о
1675
+ п
1676
+ р
1677
+ с
1678
+ т
1679
+ у
1680
+ ф
1681
+ х
1682
+ ц
1683
+ ч
1684
+ ш
1685
+ щ
1686
+ ъ
1687
+ ы
1688
+ ь
1689
+ э
1690
+ ю
1691
+ я
1692
+ ё
1693
+ і
1694
+ ְ
1695
+ ִ
1696
+ ֵ
1697
+ ֶ
1698
+ ַ
1699
+ ָ
1700
+ ֹ
1701
+ ּ
1702
+ ־
1703
+ ׁ
1704
+ א
1705
+ ב
1706
+ ג
1707
+ ד
1708
+ ה
1709
+ ו
1710
+ ז
1711
+ ח
1712
+ ט
1713
+ י
1714
+ כ
1715
+ ל
1716
+ ם
1717
+ מ
1718
+ ן
1719
+ נ
1720
+ ס
1721
+ ע
1722
+ פ
1723
+ ק
1724
+ ר
1725
+ ש
1726
+ ת
1727
+ أ
1728
+ ب
1729
+ ة
1730
+ ت
1731
+ ج
1732
+ ح
1733
+ د
1734
+ ر
1735
+ ز
1736
+ س
1737
+ ص
1738
+ ط
1739
+ ع
1740
+ ق
1741
+ ك
1742
+ ل
1743
+ م
1744
+ ن
1745
+ ه
1746
+ و
1747
+ ي
1748
+ َ
1749
+ ُ
1750
+ ِ
1751
+ ْ
1752
+
1753
+
1754
+
1755
+
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+
1762
+
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+ ế
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+
1811
+
1812
+
1813
+
1814
+
1815
+
1816
+
1817
+
1818
+
1819
+
1820
+
1821
+
1822
+
1823
+
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+ ���
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+
1862
+
1863
+
1864
+
1865
+
1866
+
1867
+
1868
+
1869
+
1870
+
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+
1889
+
1890
+
1891
+
1892
+
1893
+
1894
+
1895
+
1896
+
1897
+
1898
+
1899
+
1900
+
1901
+
1902
+
1903
+
1904
+
1905
+
1906
+
1907
+
1908
+
1909
+
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+
1961
+
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+
1981
+
1982
+
1983
+
1984
+
1985
+
1986
+
1987
+
1988
+
1989
+
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+
1997
+
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+
2043
+
2044
+
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+
2066
+
2067
+
2068
+
2069
+
2070
+
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+
2077
+
2078
+
2079
+
2080
+
2081
+
2082
+
2083
+
2084
+
2085
+
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+
2111
+
2112
+
2113
+
2114
+
2115
+
2116
+
2117
+
2118
+
2119
+
2120
+
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+
2129
+
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+
2194
+
2195
+
2196
+
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+
2246
+
2247
+
2248
+
2249
+
2250
+
2251
+
2252
+
2253
+
2254
+
2255
+
2256
+
2257
+
2258
+
2259
+
2260
+
2261
+
2262
+
2263
+
2264
+
2265
+
2266
+
2267
+
2268
+
2269
+
2270
+
2271
+
2272
+
2273
+
2274
+
2275
+
2276
+
2277
+
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+
2296
+
2297
+
2298
+
2299
+
2300
+
2301
+
2302
+
2303
+
2304
+
2305
+
2306
+
2307
+
2308
+
2309
+
2310
+
2311
+
2312
+
2313
+
2314
+
2315
+
2316
+
2317
+
2318
+
2319
+
2320
+
2321
+
2322
+
2323
+
2324
+
2325
+
2326
+
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+
2337
+
2338
+
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+
2361
+
2362
+
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+
2370
+
2371
+
2372
+
2373
+
2374
+
2375
+
2376
+
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+
2461
+
2462
+
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+
2481
+
2482
+
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+
2494
+
2495
+
2496
+
2497
+
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+
2544
+
2545
+ 𠮶
2546
+
2547
+
2548
+
2549
+
2550
+
2551
+
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+
2561
+
2562
+
2563
+
2564
+
2565
+
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+
2572
+
2573
+
2574
+
2575
+
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+
2584
+
2585
+
2586
+
data/librispeech_pc_test_clean_cross_sentence.lst ADDED
The diff for this file is too large to render. See raw diff
 
deployment/.gitignore ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ build/
8
+ develop-eggs/
9
+ dist/
10
+ downloads/
11
+ eggs/
12
+ .eggs/
13
+ lib/
14
+ lib64/
15
+ parts/
16
+ sdist/
17
+ var/
18
+ wheels/
19
+ *.egg-info/
20
+ .installed.cfg
21
+ *.egg
22
+ MANIFEST
23
+
24
+ # PyTorch
25
+ *.pth
26
+ *.pt
27
+
28
+ # Gradio
29
+ .gradio/
30
+ flagged/
31
+
32
+ # Environment
33
+ .env
34
+ .venv
35
+ env/
36
+ venv/
37
+ ENV/
38
+ env.bak/
39
+ venv.bak/
40
+
41
+ # IDE
42
+ .vscode/
43
+ .idea/
44
+ *.swp
45
+ *.swo
46
+ *~
47
+
48
+ # OS
49
+ .DS_Store
50
+ .DS_Store?
51
+ ._*
52
+ .Spotlight-V100
53
+ .Trashes
54
+ ehthumbs.db
55
+ Thumbs.db
56
+
57
+ # Logs
58
+ *.log
59
+ logs/
60
+
61
+ # Temporary files
62
+ *.tmp
63
+ *.temp
64
+ tmp/
65
+ temp/
66
+
67
+ # Cache
68
+ .cache/
69
+ *.cache
70
+
71
+ # Model downloads (if large)
72
+ # ckpts/
73
+ # models/
74
+
75
+ # Audio files (if large)
76
+ # *.wav
77
+ # *.mp3
78
+ # *.flac
79
+
80
+ # Jupyter
81
+ .ipynb_checkpoints
deployment/README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: F5-TTS Thai
3
+ emoji: 🎤
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.44.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ python_version: 3.10
12
+ hardware: cpu-basic
13
+ short_description: Zero-shot Text-to-Speech for Thai language
14
+ ---
15
+
16
+ # F5-TTS ภาษาไทย 🎤
17
+
18
+ Zero-shot Text-to-Speech สำหรับภาษาไทย ด้วยโมเดล F5-TTS
19
+
20
+ ## ✨ Features
21
+
22
+ - **Multi-Speech Generation**: สร้างเสียงพูดหลายสไตล์ในไฟล์เดียว
23
+ - **Voice Cloning**: โคลนเสียงจากไฟล์ตัวอย่างสั้นๆ
24
+ - **Thai Language Support**: รองรับภาษาไทยอย่างเต็มรูปแบบ
25
+ - **Real-time Processing**: ประมวลผลแบบ real-time
26
+ - **Segment Editing**: แก้ไขและปรับแต่งเสียงแต่ละส่วนได้
27
+
28
+ ## 🚀 วิธีใช้งาน
29
+
30
+ ### Multi-Speech Generation
31
+
32
+ 1. **เพิ่มประเภทคำพูด**: คลิก "เพิ่มประเภทคำพูด" เพื่อเพิ่มสไตล์เสียงใหม่
33
+ 2. **อัปโหลดเสียงตัวอย่าง**: อัปโหลดไฟล์เสียงสำหรับแต่ละสไตล์
34
+ 3. **ใส่ข้อความต้นฉบับ**: พิมพ์ข้อความที่สอดคล้องกับเสียงตัวอย่าง
35
+ 4. **เขียนสคริปต์**: ใช้รูปแบบ `{ชื่อสไตล์} ข้อความที่จะพูด`
36
+
37
+ ### ตัวอย่างการใช้งาน
38
+
39
+ ```
40
+ {ปกติ} สวัสดีครับ มีอะไรให้ผมช่วยไหมครับ
41
+ {เศร้า} ผมเครียดจริงๆ นะตอนนี้...
42
+ {โกรธ} รู้ไหม! เธอไม่ควรอยู่ที่นี่!
43
+ {กระซิบ} ฉันมีอะไรจะบอกคุณ แต่มันเป็นความลับนะ
44
+ ```
45
+
46
+ ## ⚙️ Technical Details
47
+
48
+ ### Models Used
49
+ - **F5-TTS**: Zero-shot text-to-speech model
50
+ - **Vocoder**: Neural vocoder for high-quality audio synthesis
51
+ - **Text Processing**: Thai text normalization and processing
52
+
53
+ ### System Requirements
54
+ - **RAM**: อย่างน้อย 4GB (แนะนำ 8GB+)
55
+ - **GPU**: ไม่จำเป็น แต่จะช่วยเพิ่มความเร็ว
56
+ - **Storage**: ~2GB สำหรับโมเดลและ dependencies
57
+
58
+ ## 🔧 Configuration
59
+
60
+ ### Model Settings
61
+ - **NFE Steps**: ควบคุมคุณภาพเสียง (16-64)
62
+ - **Cross Fade Duration**: ปรับการต่อเสียงระหว่างส่วน
63
+ - **Speed**: ปรับความเร็วการพูด
64
+ - **CFG Strength**: ปรับความแข็งแกร่งของ guidance
65
+
66
+ ### Tips สำหรับผลลัพธ์ที่ดี
67
+ 1. **เสียงตัวอย่าง**: ใช้เสียงที่ชัดเจน ไม่มีเสียงรบกวน ความยาว 5-10 วินาที
68
+ 2. **ข้อความต้นฉบับ**: ให้ตรงกับเสียงตัวอย่างที่สุด
69
+ 3. **ข้อความที่จะสร้าง**: เว้นวรรคและใส่เครื่องหมายวรรคตอนให้ชัดเจน
70
+ 4. **การตั้งค่า**: เริ่มด้วยค่า default แล้วค่อยปรับแต่ง
71
+
72
+ ## 🚨 Limitations
73
+
74
+ - รองรับเฉพาะภาษาไทยเป็นหลัก
75
+ - คุณภาพเสียงขึ้นอยู่กับเสียงตัวอย่าง
76
+ - ใช้เวลาในการประมวลผลตามความยาวข้อความ
77
+ - ต้องใช้ internet เพื่อดาวน์โหลดโมเดล
78
+
79
+ ## 📝 License
80
+
81
+ MIT License - ใช้งานได้อย่างอิสระ
82
+
83
+ ## 🤝 Contributing
84
+
85
+ สามารถมีส่วนร่วมพัฒนาได้ที่ [GitHub Repository](https://github.com/yourusername/F5-TTS-THAI)
86
+
87
+ ## 🐛 Bug Reports
88
+
89
+ หากพบปัญหาการใช้งาน กรุณาแจ้งได้ที่ Issues ของ GitHub Repository
deployment/app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import sys
4
+ import gradio as gr
5
+
6
+ # Add src to path
7
+ current_dir = os.path.dirname(os.path.abspath(__file__))
8
+ src_dir = os.path.join(current_dir, "src")
9
+ if src_dir not in sys.path:
10
+ sys.path.insert(0, src_dir)
11
+
12
+ def create_demo():
13
+ """Create the main demo interface"""
14
+ try:
15
+ from f5_tts.f5_tts_webui import F5TTSWebUI
16
+ app = F5TTSWebUI()
17
+ return app.create_gradio_interface()
18
+ except Exception as e:
19
+ # Fallback interface if imports fail
20
+ with gr.Blocks(title="F5-TTS Thai") as demo:
21
+ gr.Markdown("# F5-TTS ภาษาไทย 🎤")
22
+ gr.Markdown("## ⚠️ กำลังโหลดระบบ...")
23
+ gr.Markdown(f"**Status:** กำลังดาวน์โหลดและเตรียมโมเดล")
24
+ gr.Markdown("""
25
+ ### กรุณารอสักครู่...
26
+ - ระบบกำลังดาวน์โหลด dependencies
27
+ - กำลังโหลดโมเดล F5-TTS
28
+ - โปรเซสนี้อาจใช้เวลา 2-5 นาที
29
+
30
+ **หากยังไม่ทำงาน กรุณารีเฟรชหน้าใหม่**
31
+ """)
32
+
33
+ with gr.Row():
34
+ status_text = gr.Textbox(label="สถานะ", value="กำลังเตรียมระบบ...", interactive=False)
35
+ refresh_btn = gr.Button("🔄 รีเฟรช", variant="primary")
36
+ refresh_btn.click(fn=lambda: "รีเฟรชแล้ว", outputs=status_text)
37
+
38
+ return demo
39
+
40
+ # Create the demo - THIS IS IMPORTANT FOR HF SPACES
41
+ demo = create_demo()
42
+
43
+ # Launch settings
44
+ if __name__ == "__main__":
45
+ demo.launch()
deployment/app_minimal.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def test_function(text):
4
+ return f"ทดสอบสำเร็จ! คุณพิมพ์: {text}"
5
+
6
+ # Simple demo for testing
7
+ with gr.Blocks(title="F5-TTS Thai Test") as demo:
8
+ gr.Markdown("# 🧪 F5-TTS Thai - Test App")
9
+ gr.Markdown("แอปทดสอบเพื่อตรวจสอบว่า Hugging Face Spaces ทำงานได้")
10
+
11
+ with gr.Row():
12
+ input_text = gr.Textbox(label="ทดสอบการพิมพ์", placeholder="พิมพ์อะไรก็ได้...")
13
+ output_text = gr.Textbox(label="ผลลัพธ์")
14
+
15
+ test_btn = gr.Button("ทดสอบ", variant="primary")
16
+ test_btn.click(fn=test_function, inputs=input_text, outputs=output_text)
17
+
18
+ gr.Markdown("""
19
+ ### ✅ หากแอปนี้ทำงานได้ แสดงว่า:
20
+ - Gradio ทำงานได้ปกติ
21
+ - โครงสร้างไฟล์ถูกต้อง
22
+ - สามารถอัปโหลดแอปหลักได้
23
+
24
+ ### 📝 ขั้นตอนต่อไป:
25
+ 1. แทนที่ `app_minimal.py` ด้วย `app.py`
26
+ 2. อัปโหลดโฟลเดอร์ `src/`
27
+ 3. อัปเดต `requirements.txt`
28
+ """)
29
+
30
+ if __name__ == "__main__":
31
+ demo.launch()
deployment/requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio>=4.0.0
2
+ torch>=2.0.0
3
+ torchaudio>=2.0.0
4
+ numpy>=1.21.0
5
+ soundfile>=0.12.1
6
+ cached-path>=1.5.0
7
+ faster-whisper>=0.9.0
8
+ transformers>=4.30.0
9
+ accelerate>=0.20.0
10
+ datasets>=2.10.0
11
+ librosa>=0.10.0
12
+ scipy>=1.9.0
13
+ matplotlib>=3.5.0
14
+ Pillow>=9.0.0
15
+ requests>=2.25.0
deployment/requirements_minimal.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ gradio>=4.0.0
deployment/src/f5_tts/api.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import sys
3
+ from importlib.resources import files
4
+
5
+ import soundfile as sf
6
+ import tqdm
7
+ from cached_path import cached_path
8
+
9
+ from f5_tts.infer.utils_infer import (
10
+ hop_length,
11
+ infer_process,
12
+ load_model,
13
+ load_vocoder,
14
+ preprocess_ref_audio_text,
15
+ remove_silence_for_generated_wav,
16
+ save_spectrogram,
17
+ transcribe,
18
+ target_sample_rate,
19
+ )
20
+ from f5_tts.model import DiT, UNetT
21
+ from f5_tts.model.utils import seed_everything
22
+
23
+
24
+ class F5TTS:
25
+ def __init__(
26
+ self,
27
+ model_type="F5-TTS",
28
+ ckpt_file="",
29
+ vocab_file="",
30
+ ode_method="euler",
31
+ use_ema=True,
32
+ vocoder_name="vocos",
33
+ local_path=None,
34
+ device=None,
35
+ hf_cache_dir=None,
36
+ ):
37
+ # Initialize parameters
38
+ self.final_wave = None
39
+ self.target_sample_rate = target_sample_rate
40
+ self.hop_length = hop_length
41
+ self.seed = -1
42
+ self.mel_spec_type = vocoder_name
43
+
44
+ # Set device
45
+ if device is not None:
46
+ self.device = device
47
+ else:
48
+ import torch
49
+
50
+ self.device = (
51
+ "cuda"
52
+ if torch.cuda.is_available()
53
+ else "xpu"
54
+ if torch.xpu.is_available()
55
+ else "mps"
56
+ if torch.backends.mps.is_available()
57
+ else "cpu"
58
+ )
59
+
60
+ # Load models
61
+ self.load_vocoder_model(vocoder_name, local_path=local_path, hf_cache_dir=hf_cache_dir)
62
+ self.load_ema_model(
63
+ model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, hf_cache_dir=hf_cache_dir
64
+ )
65
+
66
+ def load_vocoder_model(self, vocoder_name, local_path=None, hf_cache_dir=None):
67
+ self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device, hf_cache_dir)
68
+
69
+ def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, hf_cache_dir=None):
70
+ if model_type == "F5-TTS":
71
+ if not ckpt_file:
72
+ if mel_spec_type == "vocos":
73
+ ckpt_file = str(
74
+ cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
75
+ )
76
+ elif mel_spec_type == "bigvgan":
77
+ ckpt_file = str(
78
+ cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt", cache_dir=hf_cache_dir)
79
+ )
80
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
81
+ model_cls = DiT
82
+ elif model_type == "E2-TTS":
83
+ if not ckpt_file:
84
+ ckpt_file = str(
85
+ cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
86
+ )
87
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
88
+ model_cls = UNetT
89
+ else:
90
+ raise ValueError(f"Unknown model type: {model_type}")
91
+
92
+ self.ema_model = load_model(
93
+ model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
94
+ )
95
+
96
+ def transcribe(self, ref_audio, language=None):
97
+ return transcribe(ref_audio, language)
98
+
99
+ def export_wav(self, wav, file_wave, remove_silence=False):
100
+ sf.write(file_wave, wav, self.target_sample_rate)
101
+
102
+ if remove_silence:
103
+ remove_silence_for_generated_wav(file_wave)
104
+
105
+ def export_spectrogram(self, spect, file_spect):
106
+ save_spectrogram(spect, file_spect)
107
+
108
+ def infer(
109
+ self,
110
+ ref_file,
111
+ ref_text,
112
+ gen_text,
113
+ show_info=print,
114
+ progress=tqdm,
115
+ target_rms=0.1,
116
+ cross_fade_duration=0.15,
117
+ sway_sampling_coef=-1,
118
+ cfg_strength=2,
119
+ nfe_step=32,
120
+ speed=1.0,
121
+ fix_duration=None,
122
+ remove_silence=False,
123
+ file_wave=None,
124
+ file_spect=None,
125
+ seed=-1,
126
+ ):
127
+ if seed == -1:
128
+ seed = random.randint(0, sys.maxsize)
129
+ seed_everything(seed)
130
+ self.seed = seed
131
+
132
+ ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
133
+
134
+ wav, sr, spect = infer_process(
135
+ ref_file,
136
+ ref_text,
137
+ gen_text,
138
+ self.ema_model,
139
+ self.vocoder,
140
+ self.mel_spec_type,
141
+ show_info=show_info,
142
+ progress=progress,
143
+ target_rms=target_rms,
144
+ cross_fade_duration=cross_fade_duration,
145
+ nfe_step=nfe_step,
146
+ cfg_strength=cfg_strength,
147
+ sway_sampling_coef=sway_sampling_coef,
148
+ speed=speed,
149
+ fix_duration=fix_duration,
150
+ device=self.device,
151
+ )
152
+
153
+ if file_wave is not None:
154
+ self.export_wav(wav, file_wave, remove_silence)
155
+
156
+ if file_spect is not None:
157
+ self.export_spectrogram(spect, file_spect)
158
+
159
+ return wav, sr, spect
160
+
161
+
162
+ if __name__ == "__main__":
163
+ f5tts = F5TTS()
164
+
165
+ wav, sr, spect = f5tts.infer(
166
+ ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
167
+ ref_text="some call me nature, others call me mother nature.",
168
+ gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
169
+ file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
170
+ file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
171
+ seed=-1, # random seed = -1
172
+ )
173
+
174
+ print("seed :", f5tts.seed)
deployment/src/f5_tts/cleantext/number_tha.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def number_to_thai_text(num, digit_by_digit=False):
2
+ # Thai numerals and place values
3
+ thai_digits = {
4
+ 0: "ศูนย์", 1: "หนึ่ง", 2: "สอง", 3: "สาม", 4: "สี่",
5
+ 5: "ห้า", 6: "หก", 7: "เจ็ด", 8: "แปด", 9: "เก้า"
6
+ }
7
+ thai_places = ["", "สิบ", "ร้อย", "พัน", "หมื่น", "แสน", "ล้าน"]
8
+
9
+ # Handle zero case
10
+ if num == 0:
11
+ return thai_digits[0]
12
+
13
+ # If digit_by_digit is True, read each digit separately
14
+ if digit_by_digit:
15
+ return " ".join(thai_digits[int(d)] for d in str(num))
16
+
17
+ # For very large numbers, we'll process in chunks of millions
18
+ if num >= 1000000:
19
+ millions = num // 1000000
20
+ remainder = num % 1000000
21
+ result = number_to_thai_text(millions) + "ล้าน"
22
+ if remainder > 0:
23
+ result += number_to_thai_text(remainder)
24
+ return result
25
+
26
+ # Convert number to string and reverse it for easier place value processing
27
+ num_str = str(num)
28
+ digits = [int(d) for d in num_str]
29
+ digits.reverse() # Reverse to process from units to highest place
30
+
31
+ result = []
32
+ for i, digit in enumerate(digits):
33
+ if digit == 0:
34
+ continue # Skip zeros
35
+
36
+ # Special case for tens place
37
+ if i == 1:
38
+ if digit == 1:
39
+ result.append(thai_places[i]) # "สิบ" for 10-19
40
+ elif digit == 2:
41
+ result.append("ยี่" + thai_places[i]) # "ยี่สิบ" for 20-29
42
+ else:
43
+ result.append(thai_digits[digit] + thai_places[i])
44
+ # Special case for units place
45
+ elif i == 0 and digit == 1:
46
+ if len(digits) > 1 and digits[1] in [1, 2]:
47
+ result.append("เอ็ด") # "เอ็ด" for 11, 21
48
+ else:
49
+ result.append(thai_digits[digit])
50
+ else:
51
+ result.append(thai_digits[digit] + thai_places[i])
52
+
53
+ # Reverse back and join
54
+ result.reverse()
55
+ return "".join(result)
56
+
57
+ def replace_numbers_with_thai(text):
58
+ import re
59
+
60
+ # Function to convert matched number to Thai text
61
+ def convert_match(match):
62
+ num_str = match.group(0).replace(',', '')
63
+
64
+ # Skip if the string is empty or invalid after removing commas
65
+ if not num_str or num_str == '.':
66
+ return match.group(0)
67
+
68
+ # Handle decimal numbers
69
+ if '.' in num_str:
70
+ parts = num_str.split('.')
71
+ integer_part = parts[0]
72
+ decimal_part = parts[1] if len(parts) > 1 else ''
73
+
74
+ # If integer part is empty, treat as 0
75
+ integer_value = int(integer_part) if integer_part else 0
76
+
77
+ # If integer part is too long (>7 digits), read digit by digit
78
+ if len(integer_part) > 7:
79
+ result = number_to_thai_text(integer_value, digit_by_digit=True)
80
+ else:
81
+ result = number_to_thai_text(integer_value)
82
+
83
+ # Add decimal part if it exists
84
+ if decimal_part:
85
+ result += "จุด " + " ".join(number_to_thai_text(int(d)) for d in decimal_part)
86
+ return result
87
+
88
+ # Handle integer numbers
89
+ num = int(num_str)
90
+ if len(num_str) > 7: # If number exceeds 7 digits
91
+ return number_to_thai_text(num, digit_by_digit=True)
92
+ return number_to_thai_text(num)
93
+
94
+ # Replace all numbers (with or without commas and decimals) in the text
95
+ def process_text(text):
96
+ # Split by spaces to process each word
97
+ words = text.split()
98
+ result = []
99
+
100
+ for word in words:
101
+ # Match only valid numeric strings (allowing commas and one decimal point)
102
+ if re.match(r'^[\d,]+(\.\d+)?$', word): # Valid number with optional decimal
103
+ result.append(convert_match(re.match(r'[\d,\.]+', word)))
104
+ else:
105
+ # If word contains non-numeric characters, read numbers digit-by-digit
106
+ if any(c.isdigit() for c in word):
107
+ processed = ""
108
+ num_chunk = ""
109
+ for char in word:
110
+ if char.isdigit():
111
+ num_chunk += char
112
+ else:
113
+ if num_chunk:
114
+ processed += " ".join(number_to_thai_text(int(d)) for d in num_chunk) + " "
115
+ num_chunk = ""
116
+ processed += char + " "
117
+ if num_chunk: # Handle any remaining numbers
118
+ processed += " ".join(number_to_thai_text(int(d)) for d in num_chunk)
119
+ result.append(processed.strip())
120
+ else:
121
+ result.append(word)
122
+
123
+ return " ".join(result)
124
+
125
+ return process_text(text)
126
+
127
+ # Test the functions
128
+ if __name__ == "__main__":
129
+ # Test number_to_thai_text
130
+ test_numbers = [1, 12, 500, 6450, 100000, 12345678]
131
+ for num in test_numbers:
132
+ print(f"{num:,} -> {number_to_thai_text(num)}")
133
+
134
+ # Test with decimals and mixed text
135
+ test_texts = [
136
+ "ฉันมีเงิน 500 บาท",
137
+ "ราคา 123.45 บาท",
138
+ "บ้านเลขที่ 12 34",
139
+ "วันที่ 15 08 2023",
140
+ ]
141
+
142
+ for text in test_texts:
143
+ result = replace_numbers_with_thai(text)
144
+ print(f"\nOriginal: {text}")
145
+ print(f"Converted: {result}")
deployment/src/f5_tts/cleantext/th_repeat.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pythainlp.tokenize import syllable_tokenize
2
+
3
+ def remove_symbol(text):
4
+ symbols = "{}[]()-_?/\\|!*%$&@#^<>+-\";:~\`=“”"
5
+ for symbol in symbols:
6
+ text = text.replace(symbol, '')
7
+ text = text.replace(" ๆ","ๆ")
8
+ return text
9
+
10
+ def process_thai_repeat(text):
11
+
12
+ cleaned_symbols = remove_symbol(text)
13
+
14
+ words = syllable_tokenize(cleaned_symbols)
15
+
16
+ result = []
17
+ i = 0
18
+ while i < len(words):
19
+ if i + 1 < len(words) and words[i + 1] == "ๆ":
20
+ result.append(words[i])
21
+ result.append(words[i])
22
+ i += 2
23
+ else:
24
+ result.append(words[i])
25
+ i += 1
26
+
27
+ return "".join(result)
28
+
29
+ if __name__ == "__main__":
30
+ # Example
31
+ test_cases = [
32
+ "วันที่ ฉันสนุกมากๆ",
33
+ "ดีมากๆ",
34
+ "บ้านสวยๆ",
35
+ "เขียนเร็วๆ",
36
+ "วันที่ ฉันสนุกมากๆ และกินอร่อยๆ"
37
+ ]
38
+
39
+ for text in test_cases:
40
+ result = process_thai_repeat(text)
41
+ print(f"Original: {text} -> Converted: {result}")
deployment/src/f5_tts/config.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Configuration settings for F5-TTS Thai WebUI
3
+ """
4
+
5
+ # Model configurations
6
+ DEFAULT_MODEL_BASE = "hf://VIZINTZOR/F5-TTS-THAI/model_1000000.pt"
7
+ FP16_MODEL_BASE = "hf://VIZINTZOR/F5-TTS-THAI/model_650000_FP16.pt"
8
+ VOCAB_BASE = "./vocab/vocab.txt"
9
+ VOCAB_HF = "hf://VIZINTZOR/F5-TTS-THAI/vocab.txt"
10
+
11
+ MODEL_CHOICES = ["Default", "FP16", "Custom"]
12
+
13
+ # F5TTS model configuration
14
+ F5TTS_MODEL_CFG = {
15
+ "dim": 1024,
16
+ "depth": 22,
17
+ "heads": 16,
18
+ "ff_mult": 2,
19
+ "text_dim": 512,
20
+ "conv_layers": 4
21
+ }
22
+
23
+ # Audio settings
24
+ TARGET_SAMPLE_RATE = 24000
25
+ HOP_LENGTH = 256
26
+
27
+ # UI settings
28
+ MAX_SPEECH_TYPES = 100
29
+ MAX_SEGMENTS = 20
30
+
31
+ # Default TTS settings
32
+ DEFAULT_TTS_SETTINGS = {
33
+ "remove_silence": True,
34
+ "cross_fade_duration": 0.15,
35
+ "nfe_step": 32,
36
+ "speed": 1.0,
37
+ "cfg_strength": 2.0,
38
+ "max_chars": 250,
39
+ "seed": -1,
40
+ "no_ref_audio": False
41
+ }
42
+
43
+ # Whisper model settings
44
+ WHISPER_MODELS = ['base', 'small', 'medium', 'large-v2', 'large-v3', 'large-v3-turbo']
45
+ WHISPER_COMPUTE_TYPES = ["float32", "float16", "int8_float16", "int8"]
46
+ WHISPER_LANGUAGES = {
47
+ "source": ["Auto", 'th', "en"],
48
+ "target": ['th', "en"]
49
+ }
50
+
51
+ # Example configurations
52
+ EXAMPLES = [
53
+ [
54
+ "./src/f5_tts/infer/examples/thai_examples/ref_gen_1.wav",
55
+ "ได้รับข่าวคราวของเราที่จะหาที่มันเป็นไปที่จะจัดขึ้น.",
56
+ "พรุ่งนี้มีประชุมสำคัญ อย่าลืมเตรียมเอกสารให้เรียบร้อย"
57
+ ],
58
+ [
59
+ "./src/f5_tts/infer/examples/thai_examples/ref_gen_2.wav",
60
+ "ฉันเดินทางไปเที่ยวที่จังหวัดเชียงใหม่ในช่วงฤดูหนาวเพื่อสัมผัสอากาศเย็นสบาย.",
61
+ "ฉันชอบฟังเพลงขณะขับรถ เพราะช่วยให้รู้สึกผ่อนคลาย"
62
+ ],
63
+ [
64
+ "./src/f5_tts/infer/examples/thai_examples/ref_gen_3.wav",
65
+ "กู้ดอาฟเต้อนูนไนท์ทูมีทยู.",
66
+ "วันนี้อากาศดีมาก เหมาะกับการไปเดินเล่นที่สวนสาธารณะ"
67
+ ],
68
+ [
69
+ "./src/f5_tts/infer/examples/thai_examples/ref_gen_4.wav",
70
+ "เราอยากจะตื่นขึ้นมามั้ยคะ.",
71
+ "เมื่อวานฉันไปเดินเล่นที่ชายหาด เสียงคลื่นซัดฝั่งเป็นจังหวะที่ชวนให้ใจสงบ."
72
+ ]
73
+ ]
74
+
75
+ TIPS_TEXT = """
76
+ - สามารถตั้งค่า "ตัวอักษรสูงสุดต่อส่วน" หรือ max_chars เพื่อลดความผิดพลาดการอ่าน แต่ความเร็วในการสร้างจะช้าลง สามารถปรับลด NFE Step เพื่อเพิ่มความเร็วได้
77
+ ปรับ NFE Step เหลือ 7 สามารถเพิ่มความเร็วการในการสร้างได้มาก แต่เสียงที่ได้พอฟังได้.
78
+ - อย่าลืมเว้นวรรคประโยคเพื่อให้สามารถแบ่งส่วนในการสร้างได้.
79
+ - สำหรับ ref_text หรือ ข้อความตันฉบับ แนะนำให้ใช้เป็นภาษาไทยหรือคำอ่านภาษาไทยสำหรับเสียงภาษาอื่น เพื่อให้การอ่านภาษาไทยดีขึ้น เช่น Good Morning > กู้ดมอร์นิ่ง.
80
+ - สำหรับเสียงต้นแบบ ควรใช้ความยาวไม่เกิน 10 วินาที ถ้าเป็นไปได้ห้ามมีเสียงรบกวน.
81
+ - สามารถปรับลดความเร็วให้ช้าลง ถ้าเสียงต้นฉบับมีความยาวไม่มาก เช่น 2-5 วินาที
82
+ - การอ่านข้อความยาวๆ หรือบางคำ ยังไม่ถูกต้อง สามารถปรับลดความเร็วเพื่อให้การอ่านถูกต้องได้ เช่น ถ้าเสียงต้นฉบับมีความยาว 1-3 วินาที อาจจะต้องประความเร็วเหลือ 0.8-0.9.
83
+ - โมเดลตอนนี้ยังเน้นการอ่านภาษาไทยเป็นหลัก ���ารอ่านภาษาไทยผสมกับภาษาอังกฤษยังต้องปรับปรุง.
84
+ """
85
+
86
+ MULTISPEECH_EXAMPLE_TEXT = """
87
+ **ตัวอย่าง:**
88
+ {ปกติ} สวัสดีครับ มีอะไรให้ผมช่วยไหมครับ
89
+ {เศร้า} ผมเครียดจริงๆ นะตอนนี้...
90
+ {โกรธ} รู้ไหม! เธอไม่ควรอยู่ที่นี่!
91
+ {กระซิบ} ฉันมีอะไรจะบอกคุณ แต่มันเป็นความลับนะ.
92
+ """
93
+
94
+ MULTISPEECH_PLACEHOLDER = """ป้อนสคริปต์โดยใส่ชื่อผู้พูด (หรือลักษณะอารมณ์) ไว้ที่ต้นแต่ละบล็อก ตัวอย่างเช่น:
95
+ {ปกติ} สวัสดีครับ มีอะไรให้ผมช่วยไหมครับ
96
+ {เศร้า} ผมเครียดจริงๆ นะตอนนี้...
97
+ {โกรธ} รู้ไหม! เธอไม่ควรอยู่ที่นี่!
98
+ {กระซิบ} ฉันมีอะไรจะบอกคุณ แต่มันเป็นความลับนะ."""
deployment/src/f5_tts/configs/E2TTS_Base_train.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN # dataset name
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0 # gradient clipping
18
+ bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
19
+
20
+ model:
21
+ name: E2TTS_Base
22
+ tokenizer: pinyin
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 1024
26
+ depth: 24
27
+ heads: 16
28
+ ff_mult: 4
29
+ mel_spec:
30
+ target_sample_rate: 24000
31
+ n_mel_channels: 100
32
+ hop_length: 256
33
+ win_length: 1024
34
+ n_fft: 1024
35
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
36
+ vocoder:
37
+ is_local: False # use local offline ckpt or not
38
+ local_path: None # local vocoder path
39
+
40
+ ckpts:
41
+ logger: wandb # wandb | tensorboard | None
42
+ save_per_updates: 50000 # save checkpoint per updates
43
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
44
+ last_per_updates: 5000 # save last checkpoint per updates
45
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
deployment/src/f5_tts/configs/E2TTS_Small_train.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0
18
+ bnb_optimizer: False
19
+
20
+ model:
21
+ name: E2TTS_Small
22
+ tokenizer: pinyin
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 768
26
+ depth: 20
27
+ heads: 12
28
+ ff_mult: 4
29
+ mel_spec:
30
+ target_sample_rate: 24000
31
+ n_mel_channels: 100
32
+ hop_length: 256
33
+ win_length: 1024
34
+ n_fft: 1024
35
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
36
+ vocoder:
37
+ is_local: False # use local offline ckpt or not
38
+ local_path: None # local vocoder path
39
+
40
+ ckpts:
41
+ logger: wandb # wandb | tensorboard | None
42
+ save_per_updates: 50000 # save checkpoint per updates
43
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
44
+ last_per_updates: 5000 # save last checkpoint per updates
45
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
deployment/src/f5_tts/configs/F5TTS_Base_train.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN # dataset name
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0 # gradient clipping
18
+ bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
19
+
20
+ model:
21
+ name: F5TTS_Base # model name
22
+ tokenizer: pinyin # tokenizer type
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 1024
26
+ depth: 22
27
+ heads: 16
28
+ ff_mult: 2
29
+ text_dim: 512
30
+ conv_layers: 4
31
+ checkpoint_activations: False # recompute activations and save memory for extra compute
32
+ mel_spec:
33
+ target_sample_rate: 24000
34
+ n_mel_channels: 100
35
+ hop_length: 256
36
+ win_length: 1024
37
+ n_fft: 1024
38
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
39
+ vocoder:
40
+ is_local: False # use local offline ckpt or not
41
+ local_path: None # local vocoder path
42
+
43
+ ckpts:
44
+ logger: wandb # wandb | tensorboard | None
45
+ save_per_updates: 50000 # save checkpoint per updates
46
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
47
+ last_per_updates: 5000 # save last checkpoint per updates
48
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
deployment/src/f5_tts/configs/F5TTS_Small_train.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0 # gradient clipping
18
+ bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
19
+
20
+ model:
21
+ name: F5TTS_Small
22
+ tokenizer: pinyin
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 768
26
+ depth: 18
27
+ heads: 12
28
+ ff_mult: 2
29
+ text_dim: 512
30
+ conv_layers: 4
31
+ checkpoint_activations: False # recompute activations and save memory for extra compute
32
+ mel_spec:
33
+ target_sample_rate: 24000
34
+ n_mel_channels: 100
35
+ hop_length: 256
36
+ win_length: 1024
37
+ n_fft: 1024
38
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
39
+ vocoder:
40
+ is_local: False # use local offline ckpt or not
41
+ local_path: None # local vocoder path
42
+
43
+ ckpts:
44
+ logger: wandb # wandb | tensorboard | None
45
+ save_per_updates: 50000 # save checkpoint per updates
46
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
47
+ last_per_updates: 5000 # save last checkpoint per updates
48
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
deployment/src/f5_tts/eval/README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Evaluation
3
+
4
+ Install packages for evaluation:
5
+
6
+ ```bash
7
+ pip install -e .[eval]
8
+ ```
9
+
10
+ ## Generating Samples for Evaluation
11
+
12
+ ### Prepare Test Datasets
13
+
14
+ 1. *Seed-TTS testset*: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
15
+ 2. *LibriSpeech test-clean*: Download from [OpenSLR](http://www.openslr.org/12/).
16
+ 3. Unzip the downloaded datasets and place them in the `data/` directory.
17
+ 4. Update the path for *LibriSpeech test-clean* data in `src/f5_tts/eval/eval_infer_batch.py`
18
+ 5. Our filtered LibriSpeech-PC 4-10s subset: `data/librispeech_pc_test_clean_cross_sentence.lst`
19
+
20
+ ### Batch Inference for Test Set
21
+
22
+ To run batch inference for evaluations, execute the following commands:
23
+
24
+ ```bash
25
+ # batch inference for evaluations
26
+ accelerate config # if not set before
27
+ bash src/f5_tts/eval/eval_infer_batch.sh
28
+ ```
29
+
30
+ ## Objective Evaluation on Generated Results
31
+
32
+ ### Download Evaluation Model Checkpoints
33
+
34
+ 1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
35
+ 2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
36
+ 3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
37
+
38
+ Then update in the following scripts with the paths you put evaluation model ckpts to.
39
+
40
+ ### Objective Evaluation
41
+
42
+ Update the path with your batch-inferenced results, and carry out WER / SIM / UTMOS evaluations:
43
+ ```bash
44
+ # Evaluation [WER] for Seed-TTS test [ZH] set
45
+ python src/f5_tts/eval/eval_seedtts_testset.py --eval_task wer --lang zh --gen_wav_dir <GEN_WAV_DIR> --gpu_nums 8
46
+
47
+ # Evaluation [SIM] for LibriSpeech-PC test-clean (cross-sentence)
48
+ python src/f5_tts/eval/eval_librispeech_test_clean.py --eval_task sim --gen_wav_dir <GEN_WAV_DIR> --librispeech_test_clean_path <TEST_CLEAN_PATH>
49
+
50
+ # Evaluation [UTMOS]. --ext: Audio extension
51
+ python src/f5_tts/eval/eval_utmos.py --audio_dir <WAV_DIR> --ext wav
52
+ ```
deployment/src/f5_tts/eval/ecapa_tdnn.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # just for speaker similarity evaluation, third-party code
2
+
3
+ # From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
4
+ # part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
5
+
6
+ import os
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+
12
+ """ Res2Conv1d + BatchNorm1d + ReLU
13
+ """
14
+
15
+
16
+ class Res2Conv1dReluBn(nn.Module):
17
+ """
18
+ in_channels == out_channels == channels
19
+ """
20
+
21
+ def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
22
+ super().__init__()
23
+ assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
24
+ self.scale = scale
25
+ self.width = channels // scale
26
+ self.nums = scale if scale == 1 else scale - 1
27
+
28
+ self.convs = []
29
+ self.bns = []
30
+ for i in range(self.nums):
31
+ self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
32
+ self.bns.append(nn.BatchNorm1d(self.width))
33
+ self.convs = nn.ModuleList(self.convs)
34
+ self.bns = nn.ModuleList(self.bns)
35
+
36
+ def forward(self, x):
37
+ out = []
38
+ spx = torch.split(x, self.width, 1)
39
+ for i in range(self.nums):
40
+ if i == 0:
41
+ sp = spx[i]
42
+ else:
43
+ sp = sp + spx[i]
44
+ # Order: conv -> relu -> bn
45
+ sp = self.convs[i](sp)
46
+ sp = self.bns[i](F.relu(sp))
47
+ out.append(sp)
48
+ if self.scale != 1:
49
+ out.append(spx[self.nums])
50
+ out = torch.cat(out, dim=1)
51
+
52
+ return out
53
+
54
+
55
+ """ Conv1d + BatchNorm1d + ReLU
56
+ """
57
+
58
+
59
+ class Conv1dReluBn(nn.Module):
60
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
61
+ super().__init__()
62
+ self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
63
+ self.bn = nn.BatchNorm1d(out_channels)
64
+
65
+ def forward(self, x):
66
+ return self.bn(F.relu(self.conv(x)))
67
+
68
+
69
+ """ The SE connection of 1D case.
70
+ """
71
+
72
+
73
+ class SE_Connect(nn.Module):
74
+ def __init__(self, channels, se_bottleneck_dim=128):
75
+ super().__init__()
76
+ self.linear1 = nn.Linear(channels, se_bottleneck_dim)
77
+ self.linear2 = nn.Linear(se_bottleneck_dim, channels)
78
+
79
+ def forward(self, x):
80
+ out = x.mean(dim=2)
81
+ out = F.relu(self.linear1(out))
82
+ out = torch.sigmoid(self.linear2(out))
83
+ out = x * out.unsqueeze(2)
84
+
85
+ return out
86
+
87
+
88
+ """ SE-Res2Block of the ECAPA-TDNN architecture.
89
+ """
90
+
91
+ # def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
92
+ # return nn.Sequential(
93
+ # Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
94
+ # Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
95
+ # Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
96
+ # SE_Connect(channels)
97
+ # )
98
+
99
+
100
+ class SE_Res2Block(nn.Module):
101
+ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
102
+ super().__init__()
103
+ self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
104
+ self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
105
+ self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
106
+ self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
107
+
108
+ self.shortcut = None
109
+ if in_channels != out_channels:
110
+ self.shortcut = nn.Conv1d(
111
+ in_channels=in_channels,
112
+ out_channels=out_channels,
113
+ kernel_size=1,
114
+ )
115
+
116
+ def forward(self, x):
117
+ residual = x
118
+ if self.shortcut:
119
+ residual = self.shortcut(x)
120
+
121
+ x = self.Conv1dReluBn1(x)
122
+ x = self.Res2Conv1dReluBn(x)
123
+ x = self.Conv1dReluBn2(x)
124
+ x = self.SE_Connect(x)
125
+
126
+ return x + residual
127
+
128
+
129
+ """ Attentive weighted mean and standard deviation pooling.
130
+ """
131
+
132
+
133
+ class AttentiveStatsPool(nn.Module):
134
+ def __init__(self, in_dim, attention_channels=128, global_context_att=False):
135
+ super().__init__()
136
+ self.global_context_att = global_context_att
137
+
138
+ # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
139
+ if global_context_att:
140
+ self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
141
+ else:
142
+ self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
143
+ self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
144
+
145
+ def forward(self, x):
146
+ if self.global_context_att:
147
+ context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
148
+ context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
149
+ x_in = torch.cat((x, context_mean, context_std), dim=1)
150
+ else:
151
+ x_in = x
152
+
153
+ # DON'T use ReLU here! In experiments, I find ReLU hard to converge.
154
+ alpha = torch.tanh(self.linear1(x_in))
155
+ # alpha = F.relu(self.linear1(x_in))
156
+ alpha = torch.softmax(self.linear2(alpha), dim=2)
157
+ mean = torch.sum(alpha * x, dim=2)
158
+ residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
159
+ std = torch.sqrt(residuals.clamp(min=1e-9))
160
+ return torch.cat([mean, std], dim=1)
161
+
162
+
163
+ class ECAPA_TDNN(nn.Module):
164
+ def __init__(
165
+ self,
166
+ feat_dim=80,
167
+ channels=512,
168
+ emb_dim=192,
169
+ global_context_att=False,
170
+ feat_type="wavlm_large",
171
+ sr=16000,
172
+ feature_selection="hidden_states",
173
+ update_extract=False,
174
+ config_path=None,
175
+ ):
176
+ super().__init__()
177
+
178
+ self.feat_type = feat_type
179
+ self.feature_selection = feature_selection
180
+ self.update_extract = update_extract
181
+ self.sr = sr
182
+
183
+ torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
184
+ try:
185
+ local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
186
+ self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path)
187
+ except: # noqa: E722
188
+ self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
189
+
190
+ if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
191
+ self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"
192
+ ):
193
+ self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
194
+ if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
195
+ self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"
196
+ ):
197
+ self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
198
+
199
+ self.feat_num = self.get_feat_num()
200
+ self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
201
+
202
+ if feat_type != "fbank" and feat_type != "mfcc":
203
+ freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"]
204
+ for name, param in self.feature_extract.named_parameters():
205
+ for freeze_val in freeze_list:
206
+ if freeze_val in name:
207
+ param.requires_grad = False
208
+ break
209
+
210
+ if not self.update_extract:
211
+ for param in self.feature_extract.parameters():
212
+ param.requires_grad = False
213
+
214
+ self.instance_norm = nn.InstanceNorm1d(feat_dim)
215
+ # self.channels = [channels] * 4 + [channels * 3]
216
+ self.channels = [channels] * 4 + [1536]
217
+
218
+ self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
219
+ self.layer2 = SE_Res2Block(
220
+ self.channels[0],
221
+ self.channels[1],
222
+ kernel_size=3,
223
+ stride=1,
224
+ padding=2,
225
+ dilation=2,
226
+ scale=8,
227
+ se_bottleneck_dim=128,
228
+ )
229
+ self.layer3 = SE_Res2Block(
230
+ self.channels[1],
231
+ self.channels[2],
232
+ kernel_size=3,
233
+ stride=1,
234
+ padding=3,
235
+ dilation=3,
236
+ scale=8,
237
+ se_bottleneck_dim=128,
238
+ )
239
+ self.layer4 = SE_Res2Block(
240
+ self.channels[2],
241
+ self.channels[3],
242
+ kernel_size=3,
243
+ stride=1,
244
+ padding=4,
245
+ dilation=4,
246
+ scale=8,
247
+ se_bottleneck_dim=128,
248
+ )
249
+
250
+ # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
251
+ cat_channels = channels * 3
252
+ self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
253
+ self.pooling = AttentiveStatsPool(
254
+ self.channels[-1], attention_channels=128, global_context_att=global_context_att
255
+ )
256
+ self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
257
+ self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
258
+
259
+ def get_feat_num(self):
260
+ self.feature_extract.eval()
261
+ wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
262
+ with torch.no_grad():
263
+ features = self.feature_extract(wav)
264
+ select_feature = features[self.feature_selection]
265
+ if isinstance(select_feature, (list, tuple)):
266
+ return len(select_feature)
267
+ else:
268
+ return 1
269
+
270
+ def get_feat(self, x):
271
+ if self.update_extract:
272
+ x = self.feature_extract([sample for sample in x])
273
+ else:
274
+ with torch.no_grad():
275
+ if self.feat_type == "fbank" or self.feat_type == "mfcc":
276
+ x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
277
+ else:
278
+ x = self.feature_extract([sample for sample in x])
279
+
280
+ if self.feat_type == "fbank":
281
+ x = x.log()
282
+
283
+ if self.feat_type != "fbank" and self.feat_type != "mfcc":
284
+ x = x[self.feature_selection]
285
+ if isinstance(x, (list, tuple)):
286
+ x = torch.stack(x, dim=0)
287
+ else:
288
+ x = x.unsqueeze(0)
289
+ norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
290
+ x = (norm_weights * x).sum(dim=0)
291
+ x = torch.transpose(x, 1, 2) + 1e-6
292
+
293
+ x = self.instance_norm(x)
294
+ return x
295
+
296
+ def forward(self, x):
297
+ x = self.get_feat(x)
298
+
299
+ out1 = self.layer1(x)
300
+ out2 = self.layer2(out1)
301
+ out3 = self.layer3(out2)
302
+ out4 = self.layer4(out3)
303
+
304
+ out = torch.cat([out2, out3, out4], dim=1)
305
+ out = F.relu(self.conv(out))
306
+ out = self.bn(self.pooling(out))
307
+ out = self.linear(out)
308
+
309
+ return out
310
+
311
+
312
+ def ECAPA_TDNN_SMALL(
313
+ feat_dim,
314
+ emb_dim=256,
315
+ feat_type="wavlm_large",
316
+ sr=16000,
317
+ feature_selection="hidden_states",
318
+ update_extract=False,
319
+ config_path=None,
320
+ ):
321
+ return ECAPA_TDNN(
322
+ feat_dim=feat_dim,
323
+ channels=512,
324
+ emb_dim=emb_dim,
325
+ feat_type=feat_type,
326
+ sr=sr,
327
+ feature_selection=feature_selection,
328
+ update_extract=update_extract,
329
+ config_path=config_path,
330
+ )
deployment/src/f5_tts/eval/eval_infer_batch.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ sys.path.append(os.getcwd())
5
+
6
+ import argparse
7
+ import time
8
+ from importlib.resources import files
9
+
10
+ import torch
11
+ import torchaudio
12
+ from accelerate import Accelerator
13
+ from tqdm import tqdm
14
+
15
+ from f5_tts.eval.utils_eval import (
16
+ get_inference_prompt,
17
+ get_librispeech_test_clean_metainfo,
18
+ get_seedtts_testset_metainfo,
19
+ )
20
+ from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
21
+ from f5_tts.model import CFM, DiT, UNetT
22
+ from f5_tts.model.utils import get_tokenizer
23
+
24
+ accelerator = Accelerator()
25
+ device = f"cuda:{accelerator.process_index}"
26
+
27
+
28
+ # --------------------- Dataset Settings -------------------- #
29
+
30
+ target_sample_rate = 24000
31
+ n_mel_channels = 100
32
+ hop_length = 256
33
+ win_length = 1024
34
+ n_fft = 1024
35
+ target_rms = 0.1
36
+
37
+ rel_path = str(files("f5_tts").joinpath("../../"))
38
+
39
+
40
+ def main():
41
+ # ---------------------- infer setting ---------------------- #
42
+
43
+ parser = argparse.ArgumentParser(description="batch inference")
44
+
45
+ parser.add_argument("-s", "--seed", default=None, type=int)
46
+ parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
47
+ parser.add_argument("-n", "--expname", required=True)
48
+ parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
49
+ parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
50
+ parser.add_argument("-to", "--tokenizer", default="pinyin", type=str, choices=["pinyin", "char"])
51
+
52
+ parser.add_argument("-nfe", "--nfestep", default=32, type=int)
53
+ parser.add_argument("-o", "--odemethod", default="euler")
54
+ parser.add_argument("-ss", "--swaysampling", default=-1, type=float)
55
+
56
+ parser.add_argument("-t", "--testset", required=True)
57
+
58
+ args = parser.parse_args()
59
+
60
+ seed = args.seed
61
+ dataset_name = args.dataset
62
+ exp_name = args.expname
63
+ ckpt_step = args.ckptstep
64
+ ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
65
+ mel_spec_type = args.mel_spec_type
66
+ tokenizer = args.tokenizer
67
+
68
+ nfe_step = args.nfestep
69
+ ode_method = args.odemethod
70
+ sway_sampling_coef = args.swaysampling
71
+
72
+ testset = args.testset
73
+
74
+ infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
75
+ cfg_strength = 2.0
76
+ speed = 1.0
77
+ use_truth_duration = False
78
+ no_ref_audio = False
79
+
80
+ if exp_name == "F5TTS_Base":
81
+ model_cls = DiT
82
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
83
+
84
+ elif exp_name == "E2TTS_Base":
85
+ model_cls = UNetT
86
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
87
+
88
+ if testset == "ls_pc_test_clean":
89
+ metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
90
+ librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
91
+ metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
92
+
93
+ elif testset == "seedtts_test_zh":
94
+ metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
95
+ metainfo = get_seedtts_testset_metainfo(metalst)
96
+
97
+ elif testset == "seedtts_test_en":
98
+ metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
99
+ metainfo = get_seedtts_testset_metainfo(metalst)
100
+
101
+ # path to save genereted wavs
102
+ output_dir = (
103
+ f"{rel_path}/"
104
+ f"results/{exp_name}_{ckpt_step}/{testset}/"
105
+ f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
106
+ f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
107
+ f"_cfg{cfg_strength}_speed{speed}"
108
+ f"{'_gt-dur' if use_truth_duration else ''}"
109
+ f"{'_no-ref-audio' if no_ref_audio else ''}"
110
+ )
111
+
112
+ # -------------------------------------------------#
113
+
114
+ use_ema = True
115
+
116
+ prompts_all = get_inference_prompt(
117
+ metainfo,
118
+ speed=speed,
119
+ tokenizer=tokenizer,
120
+ target_sample_rate=target_sample_rate,
121
+ n_mel_channels=n_mel_channels,
122
+ hop_length=hop_length,
123
+ mel_spec_type=mel_spec_type,
124
+ target_rms=target_rms,
125
+ use_truth_duration=use_truth_duration,
126
+ infer_batch_size=infer_batch_size,
127
+ )
128
+
129
+ # Vocoder model
130
+ local = False
131
+ if mel_spec_type == "vocos":
132
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
133
+ elif mel_spec_type == "bigvgan":
134
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
135
+ vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
136
+
137
+ # Tokenizer
138
+ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
139
+
140
+ # Model
141
+ model = CFM(
142
+ transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
143
+ mel_spec_kwargs=dict(
144
+ n_fft=n_fft,
145
+ hop_length=hop_length,
146
+ win_length=win_length,
147
+ n_mel_channels=n_mel_channels,
148
+ target_sample_rate=target_sample_rate,
149
+ mel_spec_type=mel_spec_type,
150
+ ),
151
+ odeint_kwargs=dict(
152
+ method=ode_method,
153
+ ),
154
+ vocab_char_map=vocab_char_map,
155
+ ).to(device)
156
+
157
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
158
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
159
+
160
+ if not os.path.exists(output_dir) and accelerator.is_main_process:
161
+ os.makedirs(output_dir)
162
+
163
+ # start batch inference
164
+ accelerator.wait_for_everyone()
165
+ start = time.time()
166
+
167
+ with accelerator.split_between_processes(prompts_all) as prompts:
168
+ for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
169
+ utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
170
+ ref_mels = ref_mels.to(device)
171
+ ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
172
+ total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)
173
+
174
+ # Inference
175
+ with torch.inference_mode():
176
+ generated, _ = model.sample(
177
+ cond=ref_mels,
178
+ text=final_text_list,
179
+ duration=total_mel_lens,
180
+ lens=ref_mel_lens,
181
+ steps=nfe_step,
182
+ cfg_strength=cfg_strength,
183
+ sway_sampling_coef=sway_sampling_coef,
184
+ no_ref_audio=no_ref_audio,
185
+ seed=seed,
186
+ )
187
+ # Final result
188
+ for i, gen in enumerate(generated):
189
+ gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
190
+ gen_mel_spec = gen.permute(0, 2, 1).to(torch.float32)
191
+ if mel_spec_type == "vocos":
192
+ generated_wave = vocoder.decode(gen_mel_spec).cpu()
193
+ elif mel_spec_type == "bigvgan":
194
+ generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
195
+
196
+ if ref_rms_list[i] < target_rms:
197
+ generated_wave = generated_wave * ref_rms_list[i] / target_rms
198
+ torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
199
+
200
+ accelerator.wait_for_everyone()
201
+ if accelerator.is_main_process:
202
+ timediff = time.time() - start
203
+ print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
204
+
205
+
206
+ if __name__ == "__main__":
207
+ main()
deployment/src/f5_tts/eval/eval_infer_batch.sh ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # e.g. F5-TTS, 16 NFE
4
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
5
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
6
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
7
+
8
+ # e.g. Vanilla E2 TTS, 32 NFE
9
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
10
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
11
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
12
+
13
+ # etc.
deployment/src/f5_tts/eval/eval_librispeech_test_clean.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation)
2
+
3
+ import argparse
4
+ import json
5
+ import os
6
+ import sys
7
+
8
+ sys.path.append(os.getcwd())
9
+
10
+ import multiprocessing as mp
11
+ from importlib.resources import files
12
+
13
+ import numpy as np
14
+ from f5_tts.eval.utils_eval import (
15
+ get_librispeech_test,
16
+ run_asr_wer,
17
+ run_sim,
18
+ )
19
+
20
+ rel_path = str(files("f5_tts").joinpath("../../"))
21
+
22
+
23
+ def get_args():
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
26
+ parser.add_argument("-l", "--lang", type=str, default="en")
27
+ parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
28
+ parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True)
29
+ parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
30
+ parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
31
+ return parser.parse_args()
32
+
33
+
34
+ def main():
35
+ args = get_args()
36
+ eval_task = args.eval_task
37
+ lang = args.lang
38
+ librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path
39
+ gen_wav_dir = args.gen_wav_dir
40
+ metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
41
+
42
+ gpus = list(range(args.gpu_nums))
43
+ test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path)
44
+
45
+ ## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book,
46
+ ## leading to a low similarity for the ground truth in some cases.
47
+ # test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth
48
+
49
+ local = args.local
50
+ if local: # use local custom checkpoint dir
51
+ asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
52
+ else:
53
+ asr_ckpt_dir = "" # auto download to cache dir
54
+ wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
55
+
56
+ # --------------------------- WER ---------------------------
57
+
58
+ if eval_task == "wer":
59
+ wer_results = []
60
+ wers = []
61
+
62
+ with mp.Pool(processes=len(gpus)) as pool:
63
+ args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
64
+ results = pool.map(run_asr_wer, args)
65
+ for r in results:
66
+ wer_results.extend(r)
67
+
68
+ wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
69
+ with open(wer_result_path, "w") as f:
70
+ for line in wer_results:
71
+ wers.append(line["wer"])
72
+ json_line = json.dumps(line, ensure_ascii=False)
73
+ f.write(json_line + "\n")
74
+
75
+ wer = round(np.mean(wers) * 100, 3)
76
+ print(f"\nTotal {len(wers)} samples")
77
+ print(f"WER : {wer}%")
78
+ print(f"Results have been saved to {wer_result_path}")
79
+
80
+ # --------------------------- SIM ---------------------------
81
+
82
+ if eval_task == "sim":
83
+ sims = []
84
+ with mp.Pool(processes=len(gpus)) as pool:
85
+ args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
86
+ results = pool.map(run_sim, args)
87
+ for r in results:
88
+ sims.extend(r)
89
+
90
+ sim = round(sum(sims) / len(sims), 3)
91
+ print(f"\nTotal {len(sims)} samples")
92
+ print(f"SIM : {sim}")
93
+
94
+
95
+ if __name__ == "__main__":
96
+ main()
deployment/src/f5_tts/eval/eval_seedtts_testset.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Evaluate with Seed-TTS testset
2
+
3
+ import argparse
4
+ import json
5
+ import os
6
+ import sys
7
+
8
+ sys.path.append(os.getcwd())
9
+
10
+ import multiprocessing as mp
11
+ from importlib.resources import files
12
+
13
+ import numpy as np
14
+ from f5_tts.eval.utils_eval import (
15
+ get_seed_tts_test,
16
+ run_asr_wer,
17
+ run_sim,
18
+ )
19
+
20
+ rel_path = str(files("f5_tts").joinpath("../../"))
21
+
22
+
23
+ def get_args():
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
26
+ parser.add_argument("-l", "--lang", type=str, default="en", choices=["zh", "en"])
27
+ parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
28
+ parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
29
+ parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
30
+ return parser.parse_args()
31
+
32
+
33
+ def main():
34
+ args = get_args()
35
+ eval_task = args.eval_task
36
+ lang = args.lang
37
+ gen_wav_dir = args.gen_wav_dir
38
+ metalst = rel_path + f"/data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
39
+
40
+ # NOTE. paraformer-zh result will be slightly different according to the number of gpus, cuz batchsize is different
41
+ # zh 1.254 seems a result of 4 workers wer_seed_tts
42
+ gpus = list(range(args.gpu_nums))
43
+ test_set = get_seed_tts_test(metalst, gen_wav_dir, gpus)
44
+
45
+ local = args.local
46
+ if local: # use local custom checkpoint dir
47
+ if lang == "zh":
48
+ asr_ckpt_dir = "../checkpoints/funasr" # paraformer-zh dir under funasr
49
+ elif lang == "en":
50
+ asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
51
+ else:
52
+ asr_ckpt_dir = "" # auto download to cache dir
53
+ wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
54
+
55
+ # --------------------------- WER ---------------------------
56
+
57
+ if eval_task == "wer":
58
+ wer_results = []
59
+ wers = []
60
+
61
+ with mp.Pool(processes=len(gpus)) as pool:
62
+ args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
63
+ results = pool.map(run_asr_wer, args)
64
+ for r in results:
65
+ wer_results.extend(r)
66
+
67
+ wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
68
+ with open(wer_result_path, "w") as f:
69
+ for line in wer_results:
70
+ wers.append(line["wer"])
71
+ json_line = json.dumps(line, ensure_ascii=False)
72
+ f.write(json_line + "\n")
73
+
74
+ wer = round(np.mean(wers) * 100, 3)
75
+ print(f"\nTotal {len(wers)} samples")
76
+ print(f"WER : {wer}%")
77
+ print(f"Results have been saved to {wer_result_path}")
78
+
79
+ # --------------------------- SIM ---------------------------
80
+
81
+ if eval_task == "sim":
82
+ sims = []
83
+ with mp.Pool(processes=len(gpus)) as pool:
84
+ args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
85
+ results = pool.map(run_sim, args)
86
+ for r in results:
87
+ sims.extend(r)
88
+
89
+ sim = round(sum(sims) / len(sims), 3)
90
+ print(f"\nTotal {len(sims)} samples")
91
+ print(f"SIM : {sim}")
92
+
93
+
94
+ if __name__ == "__main__":
95
+ main()
deployment/src/f5_tts/eval/eval_utmos.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ from pathlib import Path
4
+
5
+ import librosa
6
+ import torch
7
+ from tqdm import tqdm
8
+
9
+
10
+ def main():
11
+ parser = argparse.ArgumentParser(description="UTMOS Evaluation")
12
+ parser.add_argument("--audio_dir", type=str, required=True, help="Audio file path.")
13
+ parser.add_argument("--ext", type=str, default="wav", help="Audio extension.")
14
+ args = parser.parse_args()
15
+
16
+ device = "cuda" if torch.cuda.is_available() else "xpu" if torch.xpu.is_available() else "cpu"
17
+
18
+ predictor = torch.hub.load("tarepan/SpeechMOS:v1.2.0", "utmos22_strong", trust_repo=True)
19
+ predictor = predictor.to(device)
20
+
21
+ audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}"))
22
+ utmos_results = {}
23
+ utmos_score = 0
24
+
25
+ for audio_path in tqdm(audio_paths, desc="Processing"):
26
+ wav_name = audio_path.stem
27
+ wav, sr = librosa.load(audio_path, sr=None, mono=True)
28
+ wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0)
29
+ score = predictor(wav_tensor, sr)
30
+ utmos_results[str(wav_name)] = score.item()
31
+ utmos_score += score.item()
32
+
33
+ avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
34
+ print(f"UTMOS: {avg_score}")
35
+
36
+ utmos_result_path = Path(args.audio_dir) / "utmos_results.json"
37
+ with open(utmos_result_path, "w", encoding="utf-8") as f:
38
+ json.dump(utmos_results, f, ensure_ascii=False, indent=4)
39
+
40
+ print(f"Results have been saved to {utmos_result_path}")
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
deployment/src/f5_tts/eval/utils_eval.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import string
5
+ from pathlib import Path
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ import torchaudio
10
+ from tqdm import tqdm
11
+
12
+ from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
13
+ from f5_tts.model.modules import MelSpec
14
+ from f5_tts.model.utils import convert_char_to_pinyin
15
+
16
+
17
+ # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
18
+ def get_seedtts_testset_metainfo(metalst):
19
+ f = open(metalst)
20
+ lines = f.readlines()
21
+ f.close()
22
+ metainfo = []
23
+ for line in lines:
24
+ if len(line.strip().split("|")) == 5:
25
+ utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
26
+ elif len(line.strip().split("|")) == 4:
27
+ utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
28
+ gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
29
+ if not os.path.isabs(prompt_wav):
30
+ prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
31
+ metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
32
+ return metainfo
33
+
34
+
35
+ # librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
36
+ def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
37
+ f = open(metalst)
38
+ lines = f.readlines()
39
+ f.close()
40
+ metainfo = []
41
+ for line in lines:
42
+ ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
43
+
44
+ # ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
45
+ ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
46
+ ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
47
+
48
+ # gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
49
+ gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
50
+ gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
51
+
52
+ metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
53
+
54
+ return metainfo
55
+
56
+
57
+ # padded to max length mel batch
58
+ def padded_mel_batch(ref_mels):
59
+ max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
60
+ padded_ref_mels = []
61
+ for mel in ref_mels:
62
+ padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
63
+ padded_ref_mels.append(padded_ref_mel)
64
+ padded_ref_mels = torch.stack(padded_ref_mels)
65
+ padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
66
+ return padded_ref_mels
67
+
68
+
69
+ # get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
70
+
71
+
72
+ def get_inference_prompt(
73
+ metainfo,
74
+ speed=1.0,
75
+ tokenizer="pinyin",
76
+ polyphone=True,
77
+ target_sample_rate=24000,
78
+ n_fft=1024,
79
+ win_length=1024,
80
+ n_mel_channels=100,
81
+ hop_length=256,
82
+ mel_spec_type="vocos",
83
+ target_rms=0.1,
84
+ use_truth_duration=False,
85
+ infer_batch_size=1,
86
+ num_buckets=200,
87
+ min_secs=3,
88
+ max_secs=40,
89
+ ):
90
+ prompts_all = []
91
+
92
+ min_tokens = min_secs * target_sample_rate // hop_length
93
+ max_tokens = max_secs * target_sample_rate // hop_length
94
+
95
+ batch_accum = [0] * num_buckets
96
+ utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
97
+ [[] for _ in range(num_buckets)] for _ in range(6)
98
+ )
99
+
100
+ mel_spectrogram = MelSpec(
101
+ n_fft=n_fft,
102
+ hop_length=hop_length,
103
+ win_length=win_length,
104
+ n_mel_channels=n_mel_channels,
105
+ target_sample_rate=target_sample_rate,
106
+ mel_spec_type=mel_spec_type,
107
+ )
108
+
109
+ for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
110
+ # Audio
111
+ ref_audio, ref_sr = torchaudio.load(prompt_wav)
112
+ ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
113
+ if ref_rms < target_rms:
114
+ ref_audio = ref_audio * target_rms / ref_rms
115
+ assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
116
+ if ref_sr != target_sample_rate:
117
+ resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
118
+ ref_audio = resampler(ref_audio)
119
+
120
+ # Text
121
+ if len(prompt_text[-1].encode("utf-8")) == 1:
122
+ prompt_text = prompt_text + " "
123
+ text = [prompt_text + gt_text]
124
+ if tokenizer == "pinyin":
125
+ text_list = convert_char_to_pinyin(text, polyphone=polyphone)
126
+ else:
127
+ text_list = text
128
+
129
+ # Duration, mel frame length
130
+ ref_mel_len = ref_audio.shape[-1] // hop_length
131
+ if use_truth_duration:
132
+ gt_audio, gt_sr = torchaudio.load(gt_wav)
133
+ if gt_sr != target_sample_rate:
134
+ resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
135
+ gt_audio = resampler(gt_audio)
136
+ total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
137
+
138
+ # # test vocoder resynthesis
139
+ # ref_audio = gt_audio
140
+ else:
141
+ ref_text_len = len(prompt_text.encode("utf-8"))
142
+ gen_text_len = len(gt_text.encode("utf-8"))
143
+ total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
144
+
145
+ # to mel spectrogram
146
+ ref_mel = mel_spectrogram(ref_audio)
147
+ ref_mel = ref_mel.squeeze(0)
148
+
149
+ # deal with batch
150
+ assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
151
+ assert (
152
+ min_tokens <= total_mel_len <= max_tokens
153
+ ), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
154
+ bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
155
+
156
+ utts[bucket_i].append(utt)
157
+ ref_rms_list[bucket_i].append(ref_rms)
158
+ ref_mels[bucket_i].append(ref_mel)
159
+ ref_mel_lens[bucket_i].append(ref_mel_len)
160
+ total_mel_lens[bucket_i].append(total_mel_len)
161
+ final_text_list[bucket_i].extend(text_list)
162
+
163
+ batch_accum[bucket_i] += total_mel_len
164
+
165
+ if batch_accum[bucket_i] >= infer_batch_size:
166
+ # print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
167
+ prompts_all.append(
168
+ (
169
+ utts[bucket_i],
170
+ ref_rms_list[bucket_i],
171
+ padded_mel_batch(ref_mels[bucket_i]),
172
+ ref_mel_lens[bucket_i],
173
+ total_mel_lens[bucket_i],
174
+ final_text_list[bucket_i],
175
+ )
176
+ )
177
+ batch_accum[bucket_i] = 0
178
+ (
179
+ utts[bucket_i],
180
+ ref_rms_list[bucket_i],
181
+ ref_mels[bucket_i],
182
+ ref_mel_lens[bucket_i],
183
+ total_mel_lens[bucket_i],
184
+ final_text_list[bucket_i],
185
+ ) = [], [], [], [], [], []
186
+
187
+ # add residual
188
+ for bucket_i, bucket_frames in enumerate(batch_accum):
189
+ if bucket_frames > 0:
190
+ prompts_all.append(
191
+ (
192
+ utts[bucket_i],
193
+ ref_rms_list[bucket_i],
194
+ padded_mel_batch(ref_mels[bucket_i]),
195
+ ref_mel_lens[bucket_i],
196
+ total_mel_lens[bucket_i],
197
+ final_text_list[bucket_i],
198
+ )
199
+ )
200
+ # not only leave easy work for last workers
201
+ random.seed(666)
202
+ random.shuffle(prompts_all)
203
+
204
+ return prompts_all
205
+
206
+
207
+ # get wav_res_ref_text of seed-tts test metalst
208
+ # https://github.com/BytedanceSpeech/seed-tts-eval
209
+
210
+
211
+ def get_seed_tts_test(metalst, gen_wav_dir, gpus):
212
+ f = open(metalst)
213
+ lines = f.readlines()
214
+ f.close()
215
+
216
+ test_set_ = []
217
+ for line in tqdm(lines):
218
+ if len(line.strip().split("|")) == 5:
219
+ utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
220
+ elif len(line.strip().split("|")) == 4:
221
+ utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
222
+
223
+ if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
224
+ continue
225
+ gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
226
+ if not os.path.isabs(prompt_wav):
227
+ prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
228
+
229
+ test_set_.append((gen_wav, prompt_wav, gt_text))
230
+
231
+ num_jobs = len(gpus)
232
+ if num_jobs == 1:
233
+ return [(gpus[0], test_set_)]
234
+
235
+ wav_per_job = len(test_set_) // num_jobs + 1
236
+ test_set = []
237
+ for i in range(num_jobs):
238
+ test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
239
+
240
+ return test_set
241
+
242
+
243
+ # get librispeech test-clean cross sentence test
244
+
245
+
246
+ def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
247
+ f = open(metalst)
248
+ lines = f.readlines()
249
+ f.close()
250
+
251
+ test_set_ = []
252
+ for line in tqdm(lines):
253
+ ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
254
+
255
+ if eval_ground_truth:
256
+ gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
257
+ gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
258
+ else:
259
+ if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
260
+ raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
261
+ gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")
262
+
263
+ ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
264
+ ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
265
+
266
+ test_set_.append((gen_wav, ref_wav, gen_txt))
267
+
268
+ num_jobs = len(gpus)
269
+ if num_jobs == 1:
270
+ return [(gpus[0], test_set_)]
271
+
272
+ wav_per_job = len(test_set_) // num_jobs + 1
273
+ test_set = []
274
+ for i in range(num_jobs):
275
+ test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
276
+
277
+ return test_set
278
+
279
+
280
+ # load asr model
281
+
282
+
283
+ def load_asr_model(lang, ckpt_dir=""):
284
+ if lang == "zh":
285
+ from funasr import AutoModel
286
+
287
+ model = AutoModel(
288
+ model=os.path.join(ckpt_dir, "paraformer-zh"),
289
+ # vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
290
+ # punc_model = os.path.join(ckpt_dir, "ct-punc"),
291
+ # spk_model = os.path.join(ckpt_dir, "cam++"),
292
+ disable_update=True,
293
+ ) # following seed-tts setting
294
+ elif lang == "en":
295
+ from faster_whisper import WhisperModel
296
+
297
+ model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
298
+ model = WhisperModel(model_size, device="cuda", compute_type="float16")
299
+ return model
300
+
301
+
302
+ # WER Evaluation, the way Seed-TTS does
303
+
304
+
305
+ def run_asr_wer(args):
306
+ rank, lang, test_set, ckpt_dir = args
307
+
308
+ if lang == "zh":
309
+ import zhconv
310
+
311
+ torch.cuda.set_device(rank)
312
+ elif lang == "en":
313
+ os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
314
+ else:
315
+ raise NotImplementedError(
316
+ "lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
317
+ )
318
+
319
+ asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)
320
+
321
+ from zhon.hanzi import punctuation
322
+
323
+ punctuation_all = punctuation + string.punctuation
324
+ wer_results = []
325
+
326
+ from jiwer import compute_measures
327
+
328
+ for gen_wav, prompt_wav, truth in tqdm(test_set):
329
+ if lang == "zh":
330
+ res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
331
+ hypo = res[0]["text"]
332
+ hypo = zhconv.convert(hypo, "zh-cn")
333
+ elif lang == "en":
334
+ segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
335
+ hypo = ""
336
+ for segment in segments:
337
+ hypo = hypo + " " + segment.text
338
+
339
+ raw_truth = truth
340
+ raw_hypo = hypo
341
+
342
+ for x in punctuation_all:
343
+ truth = truth.replace(x, "")
344
+ hypo = hypo.replace(x, "")
345
+
346
+ truth = truth.replace(" ", " ")
347
+ hypo = hypo.replace(" ", " ")
348
+
349
+ if lang == "zh":
350
+ truth = " ".join([x for x in truth])
351
+ hypo = " ".join([x for x in hypo])
352
+ elif lang == "en":
353
+ truth = truth.lower()
354
+ hypo = hypo.lower()
355
+
356
+ measures = compute_measures(truth, hypo)
357
+ wer = measures["wer"]
358
+
359
+ # ref_list = truth.split(" ")
360
+ # subs = measures["substitutions"] / len(ref_list)
361
+ # dele = measures["deletions"] / len(ref_list)
362
+ # inse = measures["insertions"] / len(ref_list)
363
+
364
+ wer_results.append(
365
+ {
366
+ "wav": Path(gen_wav).stem,
367
+ "truth": raw_truth,
368
+ "hypo": raw_hypo,
369
+ "wer": wer,
370
+ }
371
+ )
372
+
373
+ return wer_results
374
+
375
+
376
+ # SIM Evaluation
377
+
378
+
379
+ def run_sim(args):
380
+ rank, test_set, ckpt_dir = args
381
+ device = f"cuda:{rank}"
382
+
383
+ model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
384
+ state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
385
+ model.load_state_dict(state_dict["model"], strict=False)
386
+
387
+ use_gpu = True if torch.cuda.is_available() else False
388
+ if use_gpu:
389
+ model = model.cuda(device)
390
+ model.eval()
391
+
392
+ sims = []
393
+ for wav1, wav2, truth in tqdm(test_set):
394
+ wav1, sr1 = torchaudio.load(wav1)
395
+ wav2, sr2 = torchaudio.load(wav2)
396
+
397
+ resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
398
+ resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
399
+ wav1 = resample1(wav1)
400
+ wav2 = resample2(wav2)
401
+
402
+ if use_gpu:
403
+ wav1 = wav1.cuda(device)
404
+ wav2 = wav2.cuda(device)
405
+ with torch.no_grad():
406
+ emb1 = model(wav1)
407
+ emb2 = model(wav2)
408
+
409
+ sim = F.cosine_similarity(emb1, emb2)[0].item()
410
+ # print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
411
+ sims.append(sim)
412
+
413
+ return sims
deployment/src/f5_tts/f5_tts_webui.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ F5-TTS Thai WebUI - Refactored Version
3
+ เวอร์ชันที่ปรับปรุงโครงสร้างใหม่ให้มีระเบียบและง่ายต่อการดูแลรักษา
4
+ """
5
+
6
+ import argparse
7
+ import sys
8
+ import os
9
+ import gradio as gr
10
+
11
+ # Add the src directory to Python path for imports
12
+ current_dir = os.path.dirname(os.path.abspath(__file__))
13
+ src_dir = os.path.dirname(current_dir)
14
+ if src_dir not in sys.path:
15
+ sys.path.insert(0, src_dir)
16
+
17
+ from f5_tts.model_manager import ModelManager
18
+ from f5_tts.tts_processor import TTSProcessor, SpeechToTextProcessor
19
+ from f5_tts.multi_speech_processor import MultiSpeechProcessor
20
+ from f5_tts.ui_components import UIComponents
21
+ from f5_tts.config import MAX_SPEECH_TYPES
22
+
23
+
24
+ class F5TTSWebUI:
25
+ """หลัก Web UI Application สำหรับ F5-TTS Thai"""
26
+
27
+ def __init__(self):
28
+ self.model_manager = ModelManager()
29
+ self.tts_processor = TTSProcessor(self.model_manager)
30
+ self.stt_processor = SpeechToTextProcessor()
31
+ self.multi_speech_processor = MultiSpeechProcessor(self.model_manager)
32
+ self.ui_components = UIComponents()
33
+
34
+ def create_gradio_interface(self):
35
+ """สร้าง Gradio interface"""
36
+ with gr.Blocks(title="F5-TTS ไทย", theme=gr.themes.Ocean()) as demo:
37
+ gr.Markdown("# F5-TTS ภาษาไทย")
38
+ gr.Markdown("สร้างคำพูดจากข้อความ ด้วย Zero-shot TTS หรือ เสียงต้นฉบับ ภาษาไทย.")
39
+
40
+ # Model selection section
41
+ model_select, model_custom, model_status, load_custom_btn = self.ui_components.create_model_selection_section()
42
+
43
+ # Setup model selection events
44
+ self._setup_model_selection_events(
45
+ model_select, model_custom, model_status, load_custom_btn
46
+ )
47
+
48
+ # Create tabs
49
+ #with gr.Tab(label="Text To Speech"):
50
+ # self._create_tts_tab()
51
+
52
+ with gr.Tab(label="Multi Speech"):
53
+ self._create_multispeech_tab()
54
+
55
+ #with gr.Tab(label="Speech to Text"):
56
+ # self._create_stt_tab()
57
+
58
+ return demo
59
+
60
+ def _setup_model_selection_events(self, model_select, model_custom, model_status, load_custom_btn):
61
+ """ตั้งค่า events สำหรับการเลือกโมเดล"""
62
+
63
+ # Model selection change event
64
+ model_select.change(
65
+ fn=self.model_manager.update_custom_model_visibility,
66
+ inputs=model_select,
67
+ outputs=model_custom
68
+ )
69
+
70
+ # Load custom model button
71
+ load_custom_btn.click(
72
+ fn=self.model_manager.load_model_by_choice,
73
+ inputs=[model_select, model_custom],
74
+ outputs=model_status
75
+ )
76
+
77
+ def _create_tts_tab(self):
78
+ """สร้าง Text To Speech tab"""
79
+ tts_components = self.ui_components.create_tts_tab(self.tts_processor.infer_tts)
80
+
81
+ # Setup TTS generation
82
+ tts_components['controls']['generate_btn'].click(
83
+ fn=self.tts_processor.infer_tts,
84
+ inputs=[
85
+ tts_components['inputs']['ref_audio'],
86
+ tts_components['inputs']['ref_text'],
87
+ tts_components['inputs']['gen_text'],
88
+ tts_components['inputs']['remove_silence'],
89
+ tts_components['inputs']['cross_fade_duration'],
90
+ tts_components['inputs']['nfe_step'],
91
+ tts_components['inputs']['speed'],
92
+ tts_components['inputs']['cfg_strength'],
93
+ tts_components['inputs']['max_chars'],
94
+ tts_components['inputs']['seed'],
95
+ tts_components['inputs']['no_ref_audio']
96
+ ],
97
+ outputs=[
98
+ tts_components['outputs']['output_audio'],
99
+ tts_components['outputs']['spectrogram'],
100
+ tts_components['inputs']['ref_text'],
101
+ tts_components['outputs']['seed_output']
102
+ ]
103
+ )
104
+
105
+ def _create_multispeech_tab(self):
106
+ """สร้าง Multi Speech tab"""
107
+ ms_components = self.ui_components.create_multispeech_tab()
108
+
109
+ # Setup speech type management
110
+ self._setup_speech_type_events(ms_components)
111
+
112
+ # Setup multispeech generation
113
+ self._setup_multispeech_generation(ms_components)
114
+
115
+ # Setup segment editing
116
+ self._setup_segment_editing(ms_components)
117
+
118
+ def _setup_speech_type_events(self, ms_components):
119
+ """ตั้งค่า events สำหรับ speech type management"""
120
+
121
+ # Add speech type button
122
+ ms_components['controls']['add_speech_type_btn'].click(
123
+ fn=self.ui_components.add_speech_type_fn,
124
+ outputs=ms_components['controls']['speech_type_rows']
125
+ )
126
+
127
+ # Delete speech type buttons
128
+ for i in range(1, len(self.ui_components.speech_type_delete_btns)):
129
+ if self.ui_components.speech_type_delete_btns[i] is not None:
130
+ self.ui_components.speech_type_delete_btns[i].click(
131
+ fn=self.ui_components.delete_speech_type_fn,
132
+ outputs=[
133
+ self.ui_components.speech_type_rows[i],
134
+ self.ui_components.speech_type_names[i],
135
+ self.ui_components.speech_type_audios[i],
136
+ self.ui_components.speech_type_ref_texts[i]
137
+ ]
138
+ )
139
+
140
+ # Insert speech type buttons
141
+ for i, insert_btn in enumerate(self.ui_components.speech_type_insert_btns):
142
+ insert_fn = self.ui_components.make_insert_speech_type_fn(i)
143
+ insert_btn.click(
144
+ fn=insert_fn,
145
+ inputs=[ms_components['inputs']['gen_text'], self.ui_components.speech_type_names[i]],
146
+ outputs=ms_components['inputs']['gen_text']
147
+ )
148
+
149
+ # Validation for generate button
150
+ ms_components['inputs']['gen_text'].change(
151
+ fn=self.multi_speech_processor.validate_speech_types,
152
+ inputs=[ms_components['inputs']['gen_text']] + ms_components['inputs']['speech_type_names'],
153
+ outputs=ms_components['controls']['generate_btn']
154
+ )
155
+
156
+ def _setup_multispeech_generation(self, ms_components):
157
+ """ตั้งค่า multispeech generation"""
158
+
159
+ # Prepare inputs for generation
160
+ generation_inputs = [
161
+ ms_components['inputs']['gen_text'],
162
+ ms_components['inputs']['cross_fade_duration'],
163
+ ms_components['inputs']['nfe_step']
164
+ ] + (
165
+ ms_components['inputs']['speech_type_names'] +
166
+ ms_components['inputs']['speech_type_audios'] +
167
+ ms_components['inputs']['speech_type_ref_texts'] +
168
+ [ms_components['inputs']['remove_silence']] +
169
+ ms_components['inputs']['segment_silence_inputs']
170
+ )
171
+
172
+ # Prepare outputs for generation
173
+ generation_outputs = [
174
+ ms_components['outputs']['audio_output'],
175
+ ms_components['outputs']['download_btn']
176
+ ] + (
177
+ ms_components['outputs']['segment_players'] +
178
+ ms_components['outputs']['segment_text_inputs'] +
179
+ ms_components['outputs']['segment_silence_inputs'] +
180
+ ms_components['outputs']['segment_regen_btns'] +
181
+ [ms_components['state']['segments_state'], ms_components['state']['sr_state']]
182
+ )
183
+
184
+ # Generate button click
185
+ ms_components['controls']['generate_btn'].click(
186
+ fn=self._wrap_multispeech_generation,
187
+ inputs=generation_inputs,
188
+ outputs=generation_outputs
189
+ )
190
+
191
+ def _wrap_multispeech_generation(self, gen_text, cross_fade_duration, nfe_step, *args):
192
+ """Wrapper สำหรับ multispeech generation"""
193
+ speech_types_data = args[:MAX_SPEECH_TYPES * 3]
194
+ remove_silence = args[MAX_SPEECH_TYPES * 3]
195
+ silence_inputs = args[MAX_SPEECH_TYPES * 3 + 1:]
196
+
197
+ return self.multi_speech_processor.generate_multistyle_speech(
198
+ gen_text,
199
+ cross_fade_duration,
200
+ nfe_step,
201
+ speech_types_data,
202
+ remove_silence,
203
+ silence_inputs
204
+ )
205
+
206
+ def _setup_segment_editing(self, ms_components):
207
+ """ตั้งค่า segment editing"""
208
+
209
+ # Update silence button
210
+ ms_components['controls']['update_silence_btn'].click(
211
+ fn=self.multi_speech_processor.update_silence_all,
212
+ inputs=ms_components['inputs']['segment_silence_inputs'] + [
213
+ ms_components['state']['segments_state'],
214
+ ms_components['state']['sr_state']
215
+ ],
216
+ outputs=ms_components['outputs']['segment_players'] +
217
+ ms_components['outputs']['segment_text_inputs'] +
218
+ ms_components['outputs']['segment_silence_inputs'] +
219
+ ms_components['outputs']['segment_regen_btns'] + [
220
+ ms_components['outputs']['audio_output'],
221
+ ms_components['outputs']['download_btn'],
222
+ ms_components['state']['segments_state'],
223
+ ms_components['state']['sr_state']
224
+ ]
225
+ )
226
+
227
+ # Regenerate segment buttons
228
+ for i, btn in enumerate(ms_components['outputs']['segment_regen_btns']):
229
+ btn.click(
230
+ fn=self._wrap_regenerate_segment,
231
+ inputs=[
232
+ gr.State(i),
233
+ ms_components['outputs']['segment_text_inputs'][i],
234
+ ms_components['outputs']['segment_silence_inputs'][i],
235
+ ms_components['state']['segments_state'],
236
+ ms_components['inputs']['cross_fade_duration'],
237
+ ms_components['inputs']['nfe_step']
238
+ ],
239
+ outputs=ms_components['outputs']['segment_players'] +
240
+ ms_components['outputs']['segment_text_inputs'] +
241
+ ms_components['outputs']['segment_silence_inputs'] +
242
+ ms_components['outputs']['segment_regen_btns'] + [
243
+ ms_components['outputs']['audio_output'],
244
+ ms_components['outputs']['download_btn'],
245
+ ms_components['state']['segments_state'],
246
+ ms_components['state']['sr_state']
247
+ ]
248
+ )
249
+
250
+ def _wrap_regenerate_segment(self, idx, new_text, silence_ms, segments, cross_fade_duration, nfe_step):
251
+ """Wrapper สำหรับ regenerate segment"""
252
+ return self.multi_speech_processor.regenerate_segment(
253
+ idx, new_text, silence_ms, segments, cross_fade_duration, nfe_step
254
+ )
255
+
256
+ def _create_stt_tab(self):
257
+ """สร้าง Speech to Text tab"""
258
+ stt_components = self.ui_components.create_stt_tab()
259
+
260
+ # Setup STT generation
261
+ stt_components['controls']['generate_btn_stt'].click(
262
+ fn=self.stt_processor.transcribe_text,
263
+ inputs=[
264
+ stt_components['inputs']['ref_audio_input'],
265
+ stt_components['inputs']['is_translate'],
266
+ stt_components['inputs']['model_wp'],
267
+ stt_components['inputs']['compute_type'],
268
+ stt_components['inputs']['target_lg'],
269
+ stt_components['inputs']['source_lg']
270
+ ],
271
+ outputs=stt_components['outputs']['output_ref_text']
272
+ )
273
+
274
+
275
+ def main():
276
+ """Main function สำหรับรัน application"""
277
+ try:
278
+ parser = argparse.ArgumentParser(description="F5-TTS Thai WebUI - Refactored")
279
+ parser.add_argument("--share", action="store_true", help="Share the app")
280
+ args = parser.parse_args()
281
+
282
+ print("กำลังเริ่มต้น F5-TTS Thai WebUI...")
283
+ app = F5TTSWebUI()
284
+ demo = app.create_gradio_interface()
285
+ print("WebUI พร้อมใช้งาน!")
286
+ demo.launch(inbrowser=True, share=args.share)
287
+ except Exception as e:
288
+ print(f"เกิดข้อผิดพลาด: {e}")
289
+ import traceback
290
+ traceback.print_exc()
291
+
292
+
293
+ if __name__ == "__main__":
294
+ main()
295
+
deployment/src/f5_tts/infer/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Inference
2
+
3
+ The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS) and [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), or will be automatically downloaded when running inference scripts.
4
+
5
+ **More checkpoints with whole community efforts can be found in [SHARED.md](SHARED.md), supporting more languages.**
6
+
7
+ Currently support **30s for a single** generation, which is the **total length** including both prompt and output audio. However, you can provide `infer_cli` and `infer_gradio` with longer text, will automatically do chunk generation. Long reference audio will be **clip short to ~15s**.
8
+
9
+ To avoid possible inference failures, make sure you have seen through the following instructions.
10
+
11
+ - Use reference audio <15s and leave some silence (e.g. 1s) at the end. Otherwise there is a risk of truncating in the middle of word, leading to suboptimal generation.
12
+ - Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
13
+ - Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses.
14
+ - Preprocess numbers to Chinese letters if you want to have them read in Chinese, otherwise in English.
15
+ - If the generation output is blank (pure silence), check for ffmpeg installation (various tutorials online, blogs, videos, etc.).
16
+ - Try turn off use_ema if using an early-stage finetuned checkpoint (which goes just few updates).
17
+
18
+
19
+ ## Gradio App
20
+
21
+ Currently supported features:
22
+
23
+ - Basic TTS with Chunk Inference
24
+ - Multi-Style / Multi-Speaker Generation
25
+ - Voice Chat powered by Qwen2.5-3B-Instruct
26
+ - [Custom inference with more language support](src/f5_tts/infer/SHARED.md)
27
+
28
+ The cli command `f5-tts_infer-gradio` equals to `python src/f5_tts/infer/infer_gradio.py`, which launches a Gradio APP (web interface) for inference.
29
+
30
+ The script will load model checkpoints from Huggingface. You can also manually download files and update the path to `load_model()` in `infer_gradio.py`. Currently only load TTS models first, will load ASR model to do transcription if `ref_text` not provided, will load LLM model if use Voice Chat.
31
+
32
+ More flags options:
33
+
34
+ ```bash
35
+ # Automatically launch the interface in the default web browser
36
+ f5-tts_infer-gradio --inbrowser
37
+
38
+ # Set the root path of the application, if it's not served from the root ("/") of the domain
39
+ # For example, if the application is served at "https://example.com/myapp"
40
+ f5-tts_infer-gradio --root_path "/myapp"
41
+ ```
42
+
43
+ Could also be used as a component for larger application:
44
+ ```python
45
+ import gradio as gr
46
+ from f5_tts.infer.infer_gradio import app
47
+
48
+ with gr.Blocks() as main_app:
49
+ gr.Markdown("# This is an example of using F5-TTS within a bigger Gradio app")
50
+
51
+ # ... other Gradio components
52
+
53
+ app.render()
54
+
55
+ main_app.launch()
56
+ ```
57
+
58
+
59
+ ## CLI Inference
60
+
61
+ The cli command `f5-tts_infer-cli` equals to `python src/f5_tts/infer/infer_cli.py`, which is a command line tool for inference.
62
+
63
+ The script will load model checkpoints from Huggingface. You can also manually download files and use `--ckpt_file` to specify the model you want to load, or directly update in `infer_cli.py`.
64
+
65
+ For change vocab.txt use `--vocab_file` to provide your `vocab.txt` file.
66
+
67
+ Basically you can inference with flags:
68
+ ```bash
69
+ # Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
70
+ f5-tts_infer-cli \
71
+ --model "F5-TTS" \
72
+ --ref_audio "ref_audio.wav" \
73
+ --ref_text "The content, subtitle or transcription of reference audio." \
74
+ --gen_text "Some text you want TTS model generate for you."
75
+
76
+ # Choose Vocoder
77
+ f5-tts_infer-cli --vocoder_name bigvgan --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base_bigvgan/model_1250000.pt>
78
+ f5-tts_infer-cli --vocoder_name vocos --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base/model_1200000.safetensors>
79
+
80
+ # More instructions
81
+ f5-tts_infer-cli --help
82
+ ```
83
+
84
+ And a `.toml` file would help with more flexible usage.
85
+
86
+ ```bash
87
+ f5-tts_infer-cli -c custom.toml
88
+ ```
89
+
90
+ For example, you can use `.toml` to pass in variables, refer to `src/f5_tts/infer/examples/basic/basic.toml`:
91
+
92
+ ```toml
93
+ # F5-TTS | E2-TTS
94
+ model = "F5-TTS"
95
+ ref_audio = "infer/examples/basic/basic_ref_en.wav"
96
+ # If an empty "", transcribes the reference audio automatically.
97
+ ref_text = "Some call me nature, others call me mother nature."
98
+ gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
99
+ # File with text to generate. Ignores the text above.
100
+ gen_file = ""
101
+ remove_silence = false
102
+ output_dir = "tests"
103
+ ```
104
+
105
+ You can also leverage `.toml` file to do multi-style generation, refer to `src/f5_tts/infer/examples/multi/story.toml`.
106
+
107
+ ```toml
108
+ # F5-TTS | E2-TTS
109
+ model = "F5-TTS"
110
+ ref_audio = "infer/examples/multi/main.flac"
111
+ # If an empty "", transcribes the reference audio automatically.
112
+ ref_text = ""
113
+ gen_text = ""
114
+ # File with text to generate. Ignores the text above.
115
+ gen_file = "infer/examples/multi/story.txt"
116
+ remove_silence = true
117
+ output_dir = "tests"
118
+
119
+ [voices.town]
120
+ ref_audio = "infer/examples/multi/town.flac"
121
+ ref_text = ""
122
+
123
+ [voices.country]
124
+ ref_audio = "infer/examples/multi/country.flac"
125
+ ref_text = ""
126
+ ```
127
+ You should mark the voice with `[main]` `[town]` `[country]` whenever you want to change voice, refer to `src/f5_tts/infer/examples/multi/story.txt`.
128
+
129
+ ## Speech Editing
130
+
131
+ To test speech editing capabilities, use the following command:
132
+
133
+ ```bash
134
+ python src/f5_tts/infer/speech_edit.py
135
+ ```
136
+
137
+ ## Socket Realtime Client
138
+
139
+ To communicate with socket server you need to run
140
+ ```bash
141
+ python src/f5_tts/socket_server.py
142
+ ```
143
+
144
+ <details>
145
+ <summary>Then create client to communicate</summary>
146
+
147
+ ```bash
148
+ # If PyAudio not installed
149
+ sudo apt-get install portaudio19-dev
150
+ pip install pyaudio
151
+ ```
152
+
153
+ ``` python
154
+ # Create the socket_client.py
155
+ import socket
156
+ import asyncio
157
+ import pyaudio
158
+ import numpy as np
159
+ import logging
160
+ import time
161
+
162
+ logging.basicConfig(level=logging.INFO)
163
+ logger = logging.getLogger(__name__)
164
+
165
+
166
+ async def listen_to_F5TTS(text, server_ip="localhost", server_port=9998):
167
+ client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
168
+ await asyncio.get_event_loop().run_in_executor(None, client_socket.connect, (server_ip, int(server_port)))
169
+
170
+ start_time = time.time()
171
+ first_chunk_time = None
172
+
173
+ async def play_audio_stream():
174
+ nonlocal first_chunk_time
175
+ p = pyaudio.PyAudio()
176
+ stream = p.open(format=pyaudio.paFloat32, channels=1, rate=24000, output=True, frames_per_buffer=2048)
177
+
178
+ try:
179
+ while True:
180
+ data = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 8192)
181
+ if not data:
182
+ break
183
+ if data == b"END":
184
+ logger.info("End of audio received.")
185
+ break
186
+
187
+ audio_array = np.frombuffer(data, dtype=np.float32)
188
+ stream.write(audio_array.tobytes())
189
+
190
+ if first_chunk_time is None:
191
+ first_chunk_time = time.time()
192
+
193
+ finally:
194
+ stream.stop_stream()
195
+ stream.close()
196
+ p.terminate()
197
+
198
+ logger.info(f"Total time taken: {time.time() - start_time:.4f} seconds")
199
+
200
+ try:
201
+ data_to_send = f"{text}".encode("utf-8")
202
+ await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, data_to_send)
203
+ await play_audio_stream()
204
+
205
+ except Exception as e:
206
+ logger.error(f"Error in listen_to_F5TTS: {e}")
207
+
208
+ finally:
209
+ client_socket.close()
210
+
211
+
212
+ if __name__ == "__main__":
213
+ text_to_send = "As a Reader assistant, I'm familiar with new technology. which are key to its improved performance in terms of both training speed and inference efficiency. Let's break down the components"
214
+
215
+ asyncio.run(listen_to_F5TTS(text_to_send))
216
+ ```
217
+
218
+ </details>
219
+
deployment/src/f5_tts/infer/SHARED.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- omit in toc -->
2
+ # Shared Model Cards
3
+
4
+ <!-- omit in toc -->
5
+ ### **Prerequisites of using**
6
+ - This document is serving as a quick lookup table for the community training/finetuning result, with various language support.
7
+ - The models in this repository are open source and are based on voluntary contributions from contributors.
8
+ - The use of models must be conditioned on respect for the respective creators. The convenience brought comes from their efforts.
9
+
10
+ <!-- omit in toc -->
11
+ ### **Welcome to share here**
12
+ - Have a pretrained/finetuned result: model checkpoint (pruned best to facilitate inference, i.e. leave only `ema_model_state_dict`) and corresponding vocab file (for tokenization).
13
+ - Host a public [huggingface model repository](https://huggingface.co/new) and upload the model related files.
14
+ - Make a pull request adding a model card to the current page, i.e. `src\f5_tts\infer\SHARED.md`.
15
+
16
+ <!-- omit in toc -->
17
+ ### Supported Languages
18
+ - [Multilingual](#multilingual)
19
+ - [F5-TTS Base @ zh \& en @ F5-TTS](#f5-tts-base--zh--en--f5-tts)
20
+ - [English](#english)
21
+ - [Finnish](#finnish)
22
+ - [F5-TTS Base @ fi @ AsmoKoskinen](#f5-tts-base--fi--asmokoskinen)
23
+ - [French](#french)
24
+ - [F5-TTS Base @ fr @ RASPIAUDIO](#f5-tts-base--fr--raspiaudio)
25
+ - [Hindi](#hindi)
26
+ - [F5-TTS Small @ hi @ SPRINGLab](#f5-tts-small--hi--springlab)
27
+ - [Italian](#italian)
28
+ - [F5-TTS Base @ it @ alien79](#f5-tts-base--it--alien79)
29
+ - [Japanese](#japanese)
30
+ - [F5-TTS Base @ ja @ Jmica](#f5-tts-base--ja--jmica)
31
+ - [Mandarin](#mandarin)
32
+ - [Russian](#russian)
33
+ - [F5-TTS Base @ ru @ HotDro4illa](#f5-tts-base--ru--hotdro4illa)
34
+ - [Spanish](#spanish)
35
+ - [F5-TTS Base @ es @ jpgallegoar](#f5-tts-base--es--jpgallegoar)
36
+
37
+
38
+ ## Multilingual
39
+
40
+ #### F5-TTS Base @ zh & en @ F5-TTS
41
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
42
+ |:---:|:------------:|:-----------:|:-------------:|
43
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
44
+
45
+ ```bash
46
+ Model: hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors
47
+ Vocab: hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt
48
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
49
+ ```
50
+
51
+ *Other infos, e.g. Author info, Github repo, Link to some sampled results, Usage instruction, Tutorial (Blog, Video, etc.) ...*
52
+
53
+
54
+ ## English
55
+
56
+
57
+ ## Finnish
58
+
59
+ #### F5-TTS Base @ fi @ AsmoKoskinen
60
+ |Model|🤗Hugging Face|Data|Model License|
61
+ |:---:|:------------:|:-----------:|:-------------:|
62
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/AsmoKoskinen/F5-TTS_Finnish_Model)|[Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0), [Vox Populi](https://huggingface.co/datasets/facebook/voxpopuli)|cc-by-nc-4.0|
63
+
64
+ ```bash
65
+ Model: hf://AsmoKoskinen/F5-TTS_Finnish_Model/model_common_voice_fi_vox_populi_fi_20241206.safetensors
66
+ Vocab: hf://AsmoKoskinen/F5-TTS_Finnish_Model/vocab.txt
67
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
68
+ ```
69
+
70
+
71
+ ## French
72
+
73
+ #### F5-TTS Base @ fr @ RASPIAUDIO
74
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
75
+ |:---:|:------------:|:-----------:|:-------------:|
76
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/RASPIAUDIO/F5-French-MixedSpeakers-reduced)|[LibriVox](https://librivox.org/)|cc-by-nc-4.0|
77
+
78
+ ```bash
79
+ Model: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_last_reduced.pt
80
+ Vocab: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
81
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
82
+ ```
83
+
84
+ - [Online Inference with Hugging Face Space](https://huggingface.co/spaces/RASPIAUDIO/f5-tts_french).
85
+ - [Tutorial video to train a new language model](https://www.youtube.com/watch?v=UO4usaOojys).
86
+ - [Discussion about this training can be found here](https://github.com/SWivid/F5-TTS/issues/434).
87
+
88
+
89
+ ## Hindi
90
+
91
+ #### F5-TTS Small @ hi @ SPRINGLab
92
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
93
+ |:---:|:------------:|:-----------:|:-------------:|
94
+ |F5-TTS Small|[ckpt & vocab](https://huggingface.co/SPRINGLab/F5-Hindi-24KHz)|[IndicTTS Hi](https://huggingface.co/datasets/SPRINGLab/IndicTTS-Hindi) & [IndicVoices-R Hi](https://huggingface.co/datasets/SPRINGLab/IndicVoices-R_Hindi) |cc-by-4.0|
95
+
96
+ ```bash
97
+ Model: hf://SPRINGLab/F5-Hindi-24KHz/model_2500000.safetensors
98
+ Vocab: hf://SPRINGLab/F5-Hindi-24KHz/vocab.txt
99
+ Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
100
+ ```
101
+
102
+ - Authors: SPRING Lab, Indian Institute of Technology, Madras
103
+ - Website: https://asr.iitm.ac.in/
104
+
105
+
106
+ ## Italian
107
+
108
+ #### F5-TTS Base @ it @ alien79
109
+ |Model|🤗Hugging Face|Data|Model License|
110
+ |:---:|:------------:|:-----------:|:-------------:|
111
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/alien79/F5-TTS-italian)|[ylacombe/cml-tts](https://huggingface.co/datasets/ylacombe/cml-tts) |cc-by-nc-4.0|
112
+
113
+ ```bash
114
+ Model: hf://alien79/F5-TTS-italian/model_159600.safetensors
115
+ Vocab: hf://alien79/F5-TTS-italian/vocab.txt
116
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
117
+ ```
118
+
119
+ - Trained by [Mithril Man](https://github.com/MithrilMan)
120
+ - Model details on [hf project home](https://huggingface.co/alien79/F5-TTS-italian)
121
+ - Open to collaborations to further improve the model
122
+
123
+
124
+ ## Japanese
125
+
126
+ #### F5-TTS Base @ ja @ Jmica
127
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
128
+ |:---:|:------------:|:-----------:|:-------------:|
129
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/Jmica/F5TTS/tree/main/JA_25498980)|[Emilia 1.7k JA](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07) & [Galgame Dataset 5.4k](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset)|cc-by-nc-4.0|
130
+
131
+ ```bash
132
+ Model: hf://Jmica/F5TTS/JA_25498980/model_25498980.pt
133
+ Vocab: hf://Jmica/F5TTS/JA_25498980/vocab_updated.txt
134
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
135
+ ```
136
+
137
+
138
+ ## Mandarin
139
+
140
+
141
+ ## Russian
142
+
143
+ #### F5-TTS Base @ ru @ HotDro4illa
144
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
145
+ |:---:|:------------:|:-----------:|:-------------:|
146
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/hotstone228/F5-TTS-Russian)|[Common voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0)|cc-by-nc-4.0|
147
+
148
+ ```bash
149
+ Model: hf://hotstone228/F5-TTS-Russian/model_last.safetensors
150
+ Vocab: hf://hotstone228/F5-TTS-Russian/vocab.txt
151
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
152
+ ```
153
+ - Finetuned by [HotDro4illa](https://github.com/HotDro4illa)
154
+ - Any improvements are welcome
155
+
156
+
157
+ ## Spanish
158
+
159
+ #### F5-TTS Base @ es @ jpgallegoar
160
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
161
+ |:---:|:------------:|:-----------:|:-------------:|
162
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/jpgallegoar/F5-Spanish)|[Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli) & Crowdsourced & TEDx, 218 hours|cc0-1.0|
163
+
164
+ - @jpgallegoar [GitHub repo](https://github.com/jpgallegoar/Spanish-F5), Jupyter Notebook and Gradio usage for Spanish model.
deployment/src/f5_tts/infer/examples/basic/basic.toml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS | E2-TTS
2
+ model = "F5-TTS"
3
+ ref_audio = "infer/examples/basic/basic_ref_en.wav"
4
+ # If an empty "", transcribes the reference audio automatically.
5
+ ref_text = "Some call me nature, others call me mother nature."
6
+ gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
7
+ # File with text to generate. Ignores the text above.
8
+ gen_file = ""
9
+ remove_silence = false
10
+ output_dir = "tests"
11
+ output_file = "infer_cli_basic.wav"
deployment/src/f5_tts/infer/examples/basic/basic_ref_en.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e22048e72414fcc1e6b6342e47a774d748a195ed34e4a5b3fcf416707f2b71
3
+ size 256018
deployment/src/f5_tts/infer/examples/basic/basic_ref_zh.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96724a113240d1f82c6ded1334122f0176b96c9226ccd3c919e625bcfd2a3ede
3
+ size 324558
deployment/src/f5_tts/infer/examples/multi/country.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb15708b4b3875e37beec46591a5d89e1a9a63fdad3b8fe4a5c8738f4f554400
3
+ size 180321
deployment/src/f5_tts/infer/examples/multi/main.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abb1107771ce7e14926fde879b959dde6db6e572476b98684f04e45e978ab19
3
+ size 279219
deployment/src/f5_tts/infer/examples/multi/story.toml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS | E2-TTS
2
+ model = "F5-TTS"
3
+ ref_audio = "infer/examples/multi/main.flac"
4
+ # If an empty "", transcribes the reference audio automatically.
5
+ ref_text = ""
6
+ gen_text = ""
7
+ # File with text to generate. Ignores the text above.
8
+ gen_file = "infer/examples/multi/story.txt"
9
+ remove_silence = true
10
+ output_dir = "tests"
11
+ output_file = "infer_cli_story.wav"
12
+
13
+ [voices.town]
14
+ ref_audio = "infer/examples/multi/town.flac"
15
+ ref_text = ""
16
+
17
+ [voices.country]
18
+ ref_audio = "infer/examples/multi/country.flac"
19
+ ref_text = ""
20
+
deployment/src/f5_tts/infer/examples/multi/story.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ A Town Mouse and a Country Mouse were acquaintances, and the Country Mouse one day invited his friend to come and see him at his home in the fields. The Town Mouse came, and they sat down to a dinner of barleycorns and roots, the latter of which had a distinctly earthy flavour. The fare was not much to the taste of the guest, and presently he broke out with [town] “My poor dear friend, you live here no better than the ants. Now, you should just see how I fare! My larder is a regular horn of plenty. You must come and stay with me, and I promise you you shall live on the fat of the land.” [main] So when he returned to town he took the Country Mouse with him, and showed him into a larder containing flour and oatmeal and figs and honey and dates. The Country Mouse had never seen anything like it, and sat down to enjoy the luxuries his friend provided: but before they had well begun, the door of the larder opened and someone came in. The two Mice scampered off and hid themselves in a narrow and exceedingly uncomfortable hole. Presently, when all was quiet, they ventured out again; but someone else came in, and off they scuttled again. This was too much for the visitor. [country] “Goodbye,” [main] said he, [country] “I’m off. You live in the lap of luxury, I can see, but you are surrounded by dangers; whereas at home I can enjoy my simple dinner of roots and corn in peace.”
deployment/src/f5_tts/infer/examples/multi/town.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d069b8ebd5180c3b30fde5d378f0a1ddac96722d62cf43537efc3c3f3a3ce8
3
+ size 229383
deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_1.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0012dc98101ec049fb2ff8e644984a1cc92c43b31327324354ed0089e31f6847
3
+ size 376844
deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_2.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2786aa1c286b572a046a8cc69e6fc5657e0367c69c2c02912b54803fa369f08
3
+ size 386802
deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_3.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d4c32a6fe2db670030bfa0280f307e1fa370ac33e10ded60cc44c72da452930
3
+ size 494282
deployment/src/f5_tts/infer/examples/thai_examples/ref_gen_4.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da5c6c828b02e966d22c5014d523e2af0879bf5baa41ae1361361741eea5ad20
3
+ size 195884