Spaces:
Sleeping
Sleeping
File size: 9,402 Bytes
3efb860 91b6eee df6b720 c29d4f3 4292030 3efb860 91b6eee 4292030 91b6eee 4292030 eb27908 91b6eee 3efb860 eb27908 91b6eee c29d4f3 91b6eee 4292030 c29d4f3 b3f4796 c29d4f3 b3f4796 c29d4f3 b3f4796 91b6eee c29d4f3 91b6eee b3f4796 16ea1b0 c29d4f3 0da3a2f c29d4f3 0da3a2f c29d4f3 0da3a2f c29d4f3 4292030 c29d4f3 0da3a2f c29d4f3 4292030 c29d4f3 0da3a2f c29d4f3 0da3a2f df6b720 c29d4f3 91b6eee b3f4796 91b6eee 4292030 91b6eee 4292030 91b6eee eb27908 91b6eee 3efb860 eb27908 c29d4f3 16ea1b0 b3f4796 c29d4f3 3efb860 c29d4f3 3efb860 91b6eee c29d4f3 b3f4796 91b6eee c29d4f3 91b6eee 4292030 c29d4f3 16ea1b0 3efb860 b3f4796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import gradio as gr
import torch
import os
import chardet
import time
from core.summarizer import NarrativeSummarizer
# Models available
MODEL_OPTIONS = [
"facebook/bart-large-cnn",
"sshleifer/distilbart-cnn-12-6",
"google/pegasus-cnn_dailymail",
"google/long-t5-local-base",
"t5-small",
"t5-base",
"mistralai/Mistral-7B-v0.1",
"Lewdiculous/Captain-Eris_Violet-V0.420-12B-GGUF-ARM-Imatrix",
"Lewdiculous/Lumimaid-v0.2-12B-GGUF-IQ-Imatrix",
"Lewdiculous/Lumimaid-v0.2-8B-GGUF-IQ-Imatrix",
"Lewdiculous/L3-8B-Stheno-v3.1-GGUF-IQ-Imatrix",
"Lewdiculous/Llama-3-Lumimaid-8B-v0.1-OAS-GGUF-IQ-Imatrix",
"Lewdiculous/Nyanade_Stunna-Maid-7B-v0.2-GGUF-IQ-Imatrix",
"Lewdiculous/InfinityRP-v1-7B-GGUF-IQ-Imatrix",
"Lewdiculous/Kunoichi-DPO-v2-7B-GGUF-Imatrix",
"Lewdiculous/BuRP_7B-GGUF-IQ-Imatrix",
"Lewdiculous/Layris_9B-GGUF-IQ-Imatrix"
]
# Prompt options
PROMPT_OPTIONS = [
"Bread only",
"Butter only",
"Bread and Butter",
"Custom Prompt"
]
def run_app(file_obj, text_input, model_name, local_model_path, prompt_type, custom_prompt_text, iterations, batch_size, progress=gr.Progress()):
start_time = time.time()
# Check if custom prompt is selected but not provided
if prompt_type == "Custom Prompt" and not custom_prompt_text:
return "β Error: 'Custom Prompt' selected but no custom prompt provided.", "", "", None
# Determine the input source: file or direct text
if file_obj is not None:
progress(0, desc="Reading file and detecting encoding...")
try:
with open(file_obj.name, 'rb') as f:
raw_data = f.read()
detected = chardet.detect(raw_data)
encoding = detected['encoding'] or 'utf-8'
text = raw_data.decode(encoding, errors='replace')
except Exception as e:
return f"β Unable to read the file: {str(e)}", "", "", None
elif text_input:
text = text_input
else:
return "β Please upload a file or enter text to summarize.", "", "", None
input_word_count = len(text.split())
# Override model name with local path if provided
actual_model_name = local_model_path if local_model_path else model_name
# Instantiate the summarizer and process the text
try:
progress(0.1, desc=f"Loading model: {actual_model_name}...")
summarizer = NarrativeSummarizer(model_name=actual_model_name)
chunks = summarizer.chunk_text_tokenwise(text, max_tokens=512, overlap=50)
total_chunks = len(chunks)
log_messages = [
f"β
Input ready. Word Count: {input_word_count}",
f"β
Using model: {actual_model_name}",
f"β
Split into {total_chunks} chunks.",
f"β
Beginning summarization with {iterations} passes..."
]
condensed_chunks = []
for i in range(0, total_chunks, batch_size):
batch = chunks[i:i + batch_size]
progress(i / total_chunks, desc=f"Processing batch {i // batch_size + 1} of {total_chunks // batch_size + 1}...")
# This is where the actual summarization happens for a single batch
for _ in range(iterations):
batch_summaries = summarizer.summarize_batch(
batch,
prompt_type,
custom_prompt_text if prompt_type == "Custom Prompt" else None
)
batch = batch_summaries
condensed_chunks.extend(batch)
log_messages.append(f"β
Pass 1 complete. Combining summaries...")
# Second pass for global compression
combined = " ".join(condensed_chunks)
final_summary = combined
# Check if the combined text is large enough for a final summary
if len(summarizer.tokenizer.encode(combined)) > summarizer.tokenizer.model_max_length * 0.8:
log_messages.append("β
Final text is large, performing global summarization...")
final_summary = summarizer.summarize_batch(
[combined],
prompt_type,
custom_prompt_text if prompt_type == "Custom Prompt" else None
)[0]
end_time = time.time()
duration = round(end_time - start_time, 2)
summary_word_count = len(final_summary.split())
log_messages.append(f"β
Summarization complete in {duration} seconds.")
log_messages.append(f"β
Final Summary Word Count: {summary_word_count}")
# Gradio now handles file downloads
output_file_path = "summary.txt"
with open(output_file_path, "w", encoding="utf-8") as f:
f.write(final_summary)
return final_summary, "β
\n" + "\n".join(log_messages), output_file_path, gr.Button(value="Summarize", interactive=True)
except Exception as e:
log_messages.append(f"β An error occurred: {str(e)}")
return f"An error occurred during summarization: {str(e)}", "\n".join(log_messages), None, gr.Button(value="Summarize", interactive=True)
# Gradio Interface
model_tip = gr.Markdown(
"""
**Model Selection Tips:**
- **facebook/bart-large-cnn:** Fast, general-purpose summarization for short to medium texts.
- **sshleifer/distilbart-cnn-12-6:** A smaller, faster version of BART.
- **google/pegasus-cnn_dailymail:** Excellent for abstractive summarization.
- **google/long-t5-local-base:** Designed for long documents; better context handling.
- **t5-small/t5-base:** Efficient and versatile for various tasks.
- **mistralai/Mistral-7B-v0.1:** High-quality nuanced summaries; resource-intensive.
- **Lewdiculous/Captain-Eris_Violet-V0.420-12B-GGUF-ARM-Imatrix:** Great for **world-building and immersive roleplay** with coherent, dynamic narratives.
- **Lewdiculous/Lumimaid-v0.2-12B-GGUF-IQ-Imatrix:** High-quality **world generation** with **creative control** for better safety and versatility.
- **Lewdiculous/Lumimaid-v0.2-8B-GGUF-IQ-Imatrix:** Versatile model for **roleplay and world-building**, with an emphasis on creative flexibility.
- **Lewdiculous/L3-8B-Stheno-v3.1-GGUF-IQ-Imatrix:** **Optimized for 1-on-1 roleplay**, handling **scenarios, RPGs**, and **storywriting**.
- **Lewdiculous/Llama-3-Lumimaid-8B-v0.1-OAS-GGUF-IQ-Imatrix:** **Versatile for roleplay** with **unrestricted generation**, perfect for dynamic worlds.
- **Lewdiculous/Nyanade_Stunna-Maid-7B-v0.2-GGUF-IQ-Imatrix:** **Multimodal model** with **vision capabilities**, ideal for **image-based and text-based roleplay**.
- **Lewdiculous/InfinityRP-v1-7B-GGUF-IQ-Imatrix:** Designed for a **cozy roleplay experience** with reduced hallucinations, focused on more grounded conversations.
- **Lewdiculous/Kunoichi-DPO-v2-7B-GGUF-Imatrix:** **Small, smart model** for **quick roleplay interactions** with thoughtful responses.
- **Lewdiculous/BuRP_7B-GGUF-IQ-Imatrix:** Great for **unconventional roleplay** with **minimal refusals** and the ability to handle unique dialogue formats.
- **Lewdiculous/Layris_9B-GGUF-IQ-Imatrix:** A **merged model** with **chaotic and unhinged creativity**, perfect for **dynamic and free-form roleplay**.
"""
)
with gr.Blocks(css="#status-log { overflow-y: scroll; max-height: 200px; }") as demo:
gr.Markdown("# Narrative Summarizer")
gr.Markdown("Upload your text file OR enter text below to get a summarized version.")
with gr.Row():
file_input = gr.File(label="Upload Text File (.txt)", file_types=['.txt'])
text_input = gr.Textbox(label="Or, paste your text here", lines=10)
gr.Markdown("---")
with gr.Accordion("Model & Prompt Settings", open=True):
with gr.Row():
model_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Choose Model", value=MODEL_OPTIONS[0])
local_model_path_input = gr.Textbox(label="Local Model Path (optional)")
model_tip.render()
with gr.Row():
prompt_dropdown = gr.Dropdown(choices=PROMPT_OPTIONS, label="Choose Prompt Type", value=PROMPT_OPTIONS[0])
custom_prompt_input = gr.Textbox(label="Custom Prompt (use {chunk} placeholder)")
gr.Markdown("---")
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
iterations_slider = gr.Slider(minimum=1, maximum=5, step=1, label="Summarization Iterations", value=1)
batch_size_slider = gr.Slider(minimum=1, maximum=8, step=1, label="Batch Size (for GPU)", value=4)
summarize_button = gr.Button("Summarize")
with gr.Row():
output_text = gr.Textbox(label="Summary Output", lines=15)
status_log = gr.Textbox(label="Process Log", lines=15, interactive=False, elem_id="status-log")
download_button = gr.File(label="Download Summary", file_types=['.txt'])
def update_ui_on_click():
return gr.Button(interactive=False)
summarize_button.click(
fn=update_ui_on_click,
outputs=summarize_button
).then(
fn=run_app,
inputs=[file_input, text_input, model_dropdown, local_model_path_input, prompt_dropdown, custom_prompt_input, iterations_slider, batch_size_slider],
outputs=[output_text, status_log, download_button, summarize_button]
)
demo.launch() |