prithivMLmods's picture
Upload modular files (#1)
a37899d verified
raw
history blame
17.9 kB
import datetime
import builtins
import asyncio
import json
import os
import threading
import traceback
from pathlib import Path
from queue import Empty, Queue
from typing import Any, Callable, Dict, Iterator, Optional, Tuple, cast
import numpy as np
import torch
from fastapi import FastAPI, WebSocket
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from starlette.websockets import WebSocketDisconnect, WebSocketState
from vibevoice.modular.modeling_vibevoice_streaming_inference import (
VibeVoiceStreamingForConditionalGenerationInference,
)
from vibevoice.processor.vibevoice_streaming_processor import (
VibeVoiceStreamingProcessor,
)
from vibevoice.modular.streamer import AudioStreamer
import copy
BASE = Path(__file__).parent
SAMPLE_RATE = 24_000
def get_timestamp():
timestamp = datetime.datetime.utcnow().replace(
tzinfo=datetime.timezone.utc
).astimezone(
datetime.timezone(datetime.timedelta(hours=8))
).strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
return timestamp
class StreamingTTSService:
def __init__(
self,
model_path: str,
device: str = "cuda",
inference_steps: int = 5,
) -> None:
self.model_path = Path(model_path)
self.inference_steps = inference_steps
self.sample_rate = SAMPLE_RATE
self.processor: Optional[VibeVoiceStreamingProcessor] = None
self.model: Optional[VibeVoiceStreamingForConditionalGenerationInference] = None
self.voice_presets: Dict[str, Path] = {}
self.default_voice_key: Optional[str] = None
self._voice_cache: Dict[str, Tuple[object, Path, str]] = {}
if device == "mpx":
print("Note: device 'mpx' detected, treating it as 'mps'.")
device = "mps"
if device == "mps" and not torch.backends.mps.is_available():
print("Warning: MPS not available. Falling back to CPU.")
device = "cpu"
self.device = device
self._torch_device = torch.device(device)
def load(self) -> None:
print(f"[startup] Loading processor from {self.model_path}")
self.processor = VibeVoiceStreamingProcessor.from_pretrained(str(self.model_path))
# Decide dtype & attention
if self.device == "mps":
load_dtype = torch.float32
device_map = None
attn_impl_primary = "sdpa"
elif self.device == "cuda":
load_dtype = torch.bfloat16
device_map = 'cuda'
attn_impl_primary = "flash_attention_2"
else:
load_dtype = torch.float32
device_map = 'cpu'
attn_impl_primary = "sdpa"
print(f"Using device: {device_map}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
# Load model
try:
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
str(self.model_path),
torch_dtype=load_dtype,
device_map=device_map,
attn_implementation=attn_impl_primary,
)
if self.device == "mps":
self.model.to("mps")
except Exception as e:
if attn_impl_primary == 'flash_attention_2':
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.")
self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
str(self.model_path),
torch_dtype=load_dtype,
device_map=self.device,
attn_implementation='sdpa',
)
print("Load model with SDPA successfully ")
else:
raise e
self.model.eval()
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
self.model.model.noise_scheduler.config,
algorithm_type="sde-dpmsolver++",
beta_schedule="squaredcos_cap_v2",
)
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
self.voice_presets = self._load_voice_presets()
preset_name = os.environ.get("VOICE_PRESET")
self.default_voice_key = self._determine_voice_key(preset_name)
self._ensure_voice_cached(self.default_voice_key)
def _load_voice_presets(self) -> Dict[str, Path]:
voices_dir = BASE.parent / "voices" / "streaming_model"
if not voices_dir.exists():
raise RuntimeError(f"Voices directory not found: {voices_dir}")
presets: Dict[str, Path] = {}
for pt_path in voices_dir.glob("*.pt"):
presets[pt_path.stem] = pt_path
if not presets:
raise RuntimeError(f"No voice preset (.pt) files found in {voices_dir}")
print(f"[startup] Found {len(presets)} voice presets")
return dict(sorted(presets.items()))
def _determine_voice_key(self, name: Optional[str]) -> str:
if name and name in self.voice_presets:
return name
default_key = "en-WHTest_man"
if default_key in self.voice_presets:
return default_key
first_key = next(iter(self.voice_presets))
print(f"[startup] Using fallback voice preset: {first_key}")
return first_key
def _ensure_voice_cached(self, key: str) -> Tuple[object, Path, str]:
if key not in self.voice_presets:
raise RuntimeError(f"Voice preset {key!r} not found")
if key not in self._voice_cache:
preset_path = self.voice_presets[key]
print(f"[startup] Loading voice preset {key} from {preset_path}")
print(f"[startup] Loading prefilled prompt from {preset_path}")
prefilled_outputs = torch.load(
preset_path,
map_location=self._torch_device,
weights_only=False,
)
self._voice_cache[key] = prefilled_outputs
return self._voice_cache[key]
def _get_voice_resources(self, requested_key: Optional[str]) -> Tuple[str, object, Path, str]:
key = requested_key if requested_key and requested_key in self.voice_presets else self.default_voice_key
if key is None:
key = next(iter(self.voice_presets))
self.default_voice_key = key
prefilled_outputs = self._ensure_voice_cached(key)
return key, prefilled_outputs
def _prepare_inputs(self, text: str, prefilled_outputs: object):
if not self.processor or not self.model:
raise RuntimeError("StreamingTTSService not initialized")
processor_kwargs = {
"text": text.strip(),
"cached_prompt": prefilled_outputs,
"padding": True,
"return_tensors": "pt",
"return_attention_mask": True,
}
processed = self.processor.process_input_with_cached_prompt(**processor_kwargs)
prepared = {
key: value.to(self._torch_device) if hasattr(value, "to") else value
for key, value in processed.items()
}
return prepared
def _run_generation(
self,
inputs,
audio_streamer: AudioStreamer,
errors,
cfg_scale: float,
do_sample: bool,
temperature: float,
top_p: float,
refresh_negative: bool,
prefilled_outputs,
stop_event: threading.Event,
) -> None:
try:
self.model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
generation_config={
"do_sample": do_sample,
"temperature": temperature if do_sample else 1.0,
"top_p": top_p if do_sample else 1.0,
},
audio_streamer=audio_streamer,
stop_check_fn=stop_event.is_set,
verbose=False,
refresh_negative=refresh_negative,
all_prefilled_outputs=copy.deepcopy(prefilled_outputs),
)
except Exception as exc: # pragma: no cover - diagnostic logging
errors.append(exc)
traceback.print_exc()
audio_streamer.end()
def stream(
self,
text: str,
cfg_scale: float = 1.5,
do_sample: bool = False,
temperature: float = 0.9,
top_p: float = 0.9,
refresh_negative: bool = True,
inference_steps: Optional[int] = None,
voice_key: Optional[str] = None,
log_callback: Optional[Callable[[str, Dict[str, Any]], None]] = None,
stop_event: Optional[threading.Event] = None,
) -> Iterator[np.ndarray]:
if not text.strip():
return
text = text.replace("’", "'")
selected_voice, prefilled_outputs = self._get_voice_resources(voice_key)
def emit(event: str, **payload: Any) -> None:
if log_callback:
try:
log_callback(event, **payload)
except Exception as exc:
print(f"[log_callback] Error while emitting {event}: {exc}")
steps_to_use = self.inference_steps
if inference_steps is not None:
try:
parsed_steps = int(inference_steps)
if parsed_steps > 0:
steps_to_use = parsed_steps
except (TypeError, ValueError):
pass
if self.model:
self.model.set_ddpm_inference_steps(num_steps=steps_to_use)
self.inference_steps = steps_to_use
inputs = self._prepare_inputs(text, prefilled_outputs)
audio_streamer = AudioStreamer(batch_size=1, stop_signal=None, timeout=None)
errors: list = []
stop_signal = stop_event or threading.Event()
thread = threading.Thread(
target=self._run_generation,
kwargs={
"inputs": inputs,
"audio_streamer": audio_streamer,
"errors": errors,
"cfg_scale": cfg_scale,
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"refresh_negative": refresh_negative,
"prefilled_outputs": prefilled_outputs,
"stop_event": stop_signal,
},
daemon=True,
)
thread.start()
generated_samples = 0
try:
stream = audio_streamer.get_stream(0)
for audio_chunk in stream:
if torch.is_tensor(audio_chunk):
audio_chunk = audio_chunk.detach().cpu().to(torch.float32).numpy()
else:
audio_chunk = np.asarray(audio_chunk, dtype=np.float32)
if audio_chunk.ndim > 1:
audio_chunk = audio_chunk.reshape(-1)
peak = np.max(np.abs(audio_chunk)) if audio_chunk.size else 0.0
if peak > 1.0:
audio_chunk = audio_chunk / peak
generated_samples += int(audio_chunk.size)
emit(
"model_progress",
generated_sec=generated_samples / self.sample_rate,
chunk_sec=audio_chunk.size / self.sample_rate,
)
chunk_to_yield = audio_chunk.astype(np.float32, copy=False)
yield chunk_to_yield
finally:
stop_signal.set()
audio_streamer.end()
thread.join()
if errors:
emit("generation_error", message=str(errors[0]))
raise errors[0]
def chunk_to_pcm16(self, chunk: np.ndarray) -> bytes:
chunk = np.clip(chunk, -1.0, 1.0)
pcm = (chunk * 32767.0).astype(np.int16)
return pcm.tobytes()
app = FastAPI()
@app.on_event("startup")
async def _startup() -> None:
model_path = os.environ.get("MODEL_PATH")
if not model_path:
raise RuntimeError("MODEL_PATH not set in environment")
device = os.environ.get("MODEL_DEVICE", "cuda")
service = StreamingTTSService(
model_path=model_path,
device=device
)
service.load()
app.state.tts_service = service
app.state.model_path = model_path
app.state.device = device
app.state.websocket_lock = asyncio.Lock()
print("[startup] Model ready.")
def streaming_tts(text: str, **kwargs) -> Iterator[np.ndarray]:
service: StreamingTTSService = app.state.tts_service
yield from service.stream(text, **kwargs)
@app.websocket("/stream")
async def websocket_stream(ws: WebSocket) -> None:
await ws.accept()
text = ws.query_params.get("text", "")
print(f"Client connected, text={text!r}")
cfg_param = ws.query_params.get("cfg")
steps_param = ws.query_params.get("steps")
voice_param = ws.query_params.get("voice")
try:
cfg_scale = float(cfg_param) if cfg_param is not None else 1.5
except ValueError:
cfg_scale = 1.5
if cfg_scale <= 0:
cfg_scale = 1.5
try:
inference_steps = int(steps_param) if steps_param is not None else None
if inference_steps is not None and inference_steps <= 0:
inference_steps = None
except ValueError:
inference_steps = None
service: StreamingTTSService = app.state.tts_service
lock: asyncio.Lock = app.state.websocket_lock
if lock.locked():
busy_message = {
"type": "log",
"event": "backend_busy",
"data": {"message": "Please wait for the other requests to complete."},
"timestamp": get_timestamp(),
}
print("Please wait for the other requests to complete.")
try:
await ws.send_text(json.dumps(busy_message))
except Exception:
pass
await ws.close(code=1013, reason="Service busy")
return
acquired = False
try:
await lock.acquire()
acquired = True
log_queue: "Queue[Dict[str, Any]]" = Queue()
def enqueue_log(event: str, **data: Any) -> None:
log_queue.put({"event": event, "data": data})
async def flush_logs() -> None:
while True:
try:
entry = log_queue.get_nowait()
except Empty:
break
message = {
"type": "log",
"event": entry.get("event"),
"data": entry.get("data", {}),
"timestamp": get_timestamp(),
}
try:
await ws.send_text(json.dumps(message))
except Exception:
break
enqueue_log(
"backend_request_received",
text_length=len(text or ""),
cfg_scale=cfg_scale,
inference_steps=inference_steps,
voice=voice_param,
)
stop_signal = threading.Event()
iterator = streaming_tts(
text,
cfg_scale=cfg_scale,
inference_steps=inference_steps,
voice_key=voice_param,
log_callback=enqueue_log,
stop_event=stop_signal,
)
sentinel = object()
first_ws_send_logged = False
await flush_logs()
try:
while ws.client_state == WebSocketState.CONNECTED:
await flush_logs()
chunk = await asyncio.to_thread(next, iterator, sentinel)
if chunk is sentinel:
break
chunk = cast(np.ndarray, chunk)
payload = service.chunk_to_pcm16(chunk)
await ws.send_bytes(payload)
if not first_ws_send_logged:
first_ws_send_logged = True
enqueue_log("backend_first_chunk_sent")
await flush_logs()
except WebSocketDisconnect:
print("Client disconnected (WebSocketDisconnect)")
enqueue_log("client_disconnected")
stop_signal.set()
finally:
stop_signal.set()
enqueue_log("backend_stream_complete")
await flush_logs()
try:
iterator_close = getattr(iterator, "close", None)
if callable(iterator_close):
iterator_close()
except Exception:
pass
# clear the log queue
while not log_queue.empty():
try:
log_queue.get_nowait()
except Empty:
break
if ws.client_state == WebSocketState.CONNECTED:
await ws.close()
print("WS handler exit")
finally:
if acquired:
lock.release()
@app.get("/")
def index():
return FileResponse(BASE / "index.html")
@app.get("/config")
def get_config():
service: StreamingTTSService = app.state.tts_service
voices = sorted(service.voice_presets.keys())
return {
"voices": voices,
"default_voice": service.default_voice_key,
}