Spaces:
Runtime error
Runtime error
Commit
·
a28041c
1
Parent(s):
9379375
allow buffered inference up to 10 mins
Browse files- app.py +53 -18
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -6,16 +6,39 @@ import soundfile as sf
|
|
| 6 |
import tempfile
|
| 7 |
import uuid
|
| 8 |
|
|
|
|
|
|
|
| 9 |
from nemo.collections.asr.models import ASRModel
|
|
|
|
|
|
|
| 10 |
|
| 11 |
SAMPLE_RATE = 16000 # Hz
|
|
|
|
| 12 |
|
| 13 |
model = ASRModel.from_pretrained("nvidia/canary-1b")
|
| 14 |
model.eval()
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
def convert_audio(audio_filepath, tmpdir, utt_id):
|
| 21 |
"""
|
|
@@ -24,21 +47,20 @@ def convert_audio(audio_filepath, tmpdir, utt_id):
|
|
| 24 |
Returns output filename and duration.
|
| 25 |
"""
|
| 26 |
|
| 27 |
-
data, sr = librosa.load(audio_filepath)
|
| 28 |
|
| 29 |
duration = librosa.get_duration(y=data, sr=sr)
|
| 30 |
|
| 31 |
-
if duration >
|
| 32 |
raise gr.Error(
|
| 33 |
-
f"This demo can transcribe up to {
|
|
|
|
|
|
|
| 34 |
)
|
| 35 |
|
| 36 |
if sr != SAMPLE_RATE:
|
| 37 |
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
| 38 |
|
| 39 |
-
# monochannel
|
| 40 |
-
data = librosa.to_mono(data)
|
| 41 |
-
|
| 42 |
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
| 43 |
|
| 44 |
# save output audio
|
|
@@ -54,7 +76,6 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
|
|
| 54 |
|
| 55 |
utt_id = uuid.uuid4()
|
| 56 |
with tempfile.TemporaryDirectory() as tmpdir:
|
| 57 |
-
|
| 58 |
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
| 59 |
|
| 60 |
# map src_lang and tgt_lang from long versions to short
|
|
@@ -102,9 +123,23 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
|
|
| 102 |
fout.write(line + '\n')
|
| 103 |
|
| 104 |
# call transcribe, passing in manifest filepath
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
# add logic to make sure dropdown menus only suggest valid combos
|
| 110 |
def on_src_or_tgt_lang_change(src_lang_value, tgt_lang_value, pnc_value):
|
|
@@ -124,15 +159,15 @@ def on_src_or_tgt_lang_change(src_lang_value, tgt_lang_value, pnc_value):
|
|
| 124 |
tgt_lang_value, and then which states you can go to from there.
|
| 125 |
|
| 126 |
tgt lang
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
src ES| Y | Y | |
|
| 132 |
lang ------------------
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
"""
|
| 137 |
|
| 138 |
if src_lang_value == "English" and tgt_lang_value == "English":
|
|
|
|
| 6 |
import tempfile
|
| 7 |
import uuid
|
| 8 |
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
from nemo.collections.asr.models import ASRModel
|
| 12 |
+
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
|
| 13 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
|
| 14 |
|
| 15 |
SAMPLE_RATE = 16000 # Hz
|
| 16 |
+
MAX_AUDIO_MINUTES = 10 # wont try to transcribe if longer than this
|
| 17 |
|
| 18 |
model = ASRModel.from_pretrained("nvidia/canary-1b")
|
| 19 |
model.eval()
|
| 20 |
|
| 21 |
+
# make sure beam size always 1 for consistency
|
| 22 |
+
model.change_decoding_strategy(None)
|
| 23 |
+
decoding_cfg = model.cfg.decoding
|
| 24 |
+
decoding_cfg.beam.beam_size = 1
|
| 25 |
+
model.change_decoding_strategy(decoding_cfg)
|
| 26 |
+
|
| 27 |
+
# setup for buffered inference
|
| 28 |
+
model.cfg.preprocessor.dither = 0.0
|
| 29 |
+
model.cfg.preprocessor.pad_to = 0
|
| 30 |
+
|
| 31 |
+
feature_stride = model.cfg.preprocessor['window_stride']
|
| 32 |
+
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
| 33 |
|
| 34 |
+
frame_asr = FrameBatchMultiTaskAED(
|
| 35 |
+
asr_model=model,
|
| 36 |
+
frame_len=40.0,
|
| 37 |
+
total_buffer=40.0,
|
| 38 |
+
batch_size=16,
|
| 39 |
+
)
|
| 40 |
|
| 41 |
+
amp_dtype = torch.float16
|
| 42 |
|
| 43 |
def convert_audio(audio_filepath, tmpdir, utt_id):
|
| 44 |
"""
|
|
|
|
| 47 |
Returns output filename and duration.
|
| 48 |
"""
|
| 49 |
|
| 50 |
+
data, sr = librosa.load(audio_filepath, sr=None, mono=False)
|
| 51 |
|
| 52 |
duration = librosa.get_duration(y=data, sr=sr)
|
| 53 |
|
| 54 |
+
if duration / 60.0 > MAX_AUDIO_MINUTES:
|
| 55 |
raise gr.Error(
|
| 56 |
+
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
|
| 57 |
+
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
| 58 |
+
"(click on the scissors icon to start trimming audio)."
|
| 59 |
)
|
| 60 |
|
| 61 |
if sr != SAMPLE_RATE:
|
| 62 |
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
| 64 |
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
| 65 |
|
| 66 |
# save output audio
|
|
|
|
| 76 |
|
| 77 |
utt_id = uuid.uuid4()
|
| 78 |
with tempfile.TemporaryDirectory() as tmpdir:
|
|
|
|
| 79 |
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
| 80 |
|
| 81 |
# map src_lang and tgt_lang from long versions to short
|
|
|
|
| 123 |
fout.write(line + '\n')
|
| 124 |
|
| 125 |
# call transcribe, passing in manifest filepath
|
| 126 |
+
if duration < 40:
|
| 127 |
+
output_text = model.transcribe(manifest_filepath)[0]
|
| 128 |
+
else: # do buffered inference
|
| 129 |
+
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
hyps = get_buffered_pred_feat_multitaskAED(
|
| 132 |
+
frame_asr,
|
| 133 |
+
model.cfg.preprocessor,
|
| 134 |
+
model_stride_in_secs,
|
| 135 |
+
model.device,
|
| 136 |
+
manifest=manifest_filepath,
|
| 137 |
+
filepaths=None,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
output_text = hyps[0].text
|
| 141 |
+
|
| 142 |
+
return output_text
|
| 143 |
|
| 144 |
# add logic to make sure dropdown menus only suggest valid combos
|
| 145 |
def on_src_or_tgt_lang_change(src_lang_value, tgt_lang_value, pnc_value):
|
|
|
|
| 159 |
tgt_lang_value, and then which states you can go to from there.
|
| 160 |
|
| 161 |
tgt lang
|
| 162 |
+
- |EN |ES |FR |DE
|
| 163 |
+
------------------
|
| 164 |
+
EN| Y | Y | Y | Y
|
| 165 |
+
------------------
|
| 166 |
src ES| Y | Y | |
|
| 167 |
lang ------------------
|
| 168 |
+
FR| Y | | Y |
|
| 169 |
+
------------------
|
| 170 |
+
DE| Y | | | Y
|
| 171 |
"""
|
| 172 |
|
| 173 |
if src_lang_value == "English" and tgt_lang_value == "English":
|
requirements.txt
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
git+https://github.com/NVIDIA/NeMo.git@
|
|
|
|
| 1 |
+
git+https://github.com/NVIDIA/NeMo.git@61325fe0c70ef4294d8562991f6841d26b238e85#egg=nemo_toolkit[all] # commit from canary_buffer_infer branch
|