Spaces:
Running
Running
File size: 25,314 Bytes
1753aaf 3fc1750 66377c0 1753aaf fccd6d1 1753aaf 66377c0 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf 66377c0 1753aaf a22028a 1753aaf fccd6d1 9748475 3fc1750 1753aaf a22028a 66377c0 9748475 b192a00 a22028a 9748475 a22028a 9748475 a22028a 63788ce 1753aaf a22028a 1753aaf a22028a 1753aaf caa5ed5 a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf caa5ed5 9748475 caa5ed5 9748475 caa5ed5 a22028a 1753aaf a22028a caa5ed5 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf 27ccd42 9748475 1753aaf caa5ed5 1753aaf a22028a 71b8cb9 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf fccd6d1 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf a22028a 1753aaf a22028a 1753aaf da17e7a 1801510 da17e7a 9748475 1753aaf 9748475 63788ce 9748475 1753aaf 3b570b9 a22028a 9748475 a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a da17e7a 1801510 1753aaf a22028a 1753aaf a22028a c63961d a22028a c63961d a22028a da17e7a a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf a22028a 1753aaf 9748475 a22028a 1801510 da17e7a 1801510 a22028a 1801510 a22028a 1753aaf 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf a22028a 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf 9748475 1753aaf 9748475 a22028a 9748475 a22028a 1753aaf 9748475 1753aaf 9748475 3b570b9 1753aaf a22028a 9748475 a22028a 9748475 a22028a 9748475 a22028a 3b570b9 a22028a 1753aaf c6b12a0 8cf2fed a22028a 9748475 a22028a 9748475 a22028a 1753aaf 5c24909 a22028a 9748475 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import gradio as gr
import torch
import re
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
NllbTokenizer
)
from functools import lru_cache
# ==================== NEW: PULAR TO FRENCH TRANSLATOR ====================
@lru_cache(maxsize=1)
def load_pular_to_french():
"""Load the Pular-to-French translator model"""
print("Loading Pular→French translator model...")
model_name = "mlamined/pl_fr_104" # Your new checkpoint
try:
# Load with NLLB tokenizer for proper language codes
tokenizer = NllbTokenizer.from_pretrained(
"facebook/nllb-200-distilled-600M",
src_lang="fuv_Latn", # Pular source
tgt_lang="fra_Latn" # French target
)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
src_lang="fuv_Latn",
tgt_lang="fra_Latn",
max_length=256,
num_beams=3,
early_stopping=True
)
print("Pular→French translator model loaded successfully!")
return translator
except Exception as e:
print(f"Error loading Pular→French translator: {e}")
return None
# ==================== EXISTING MODELS ====================
@lru_cache(maxsize=1)
def load_french_to_pular():
"""Load the French-to-Pular translator model"""
print("Loading French→Pular translator model...")
model_name = "mlamined/fr_pl_130"
try:
tokenizer = NllbTokenizer.from_pretrained(
"facebook/nllb-200-distilled-600M",
src_lang="fra_Latn",
tgt_lang="fuv_Latn"
)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
src_lang="fra_Latn",
tgt_lang="fuv_Latn",
max_length=256,
num_beams=3,
early_stopping=True
)
print("French→Pular translator model loaded successfully!")
return translator
except Exception as e:
print(f"Error loading French→Pular translator: {e}")
return None
@lru_cache(maxsize=1)
def load_llm():
"""Load the LLM model (Gemma-2-2B)"""
print("Loading LLM model...")
llm_model_name = "google/gemma-2-2b-it"
try:
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
# Set padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with appropriate settings for CPU
model = AutoModelForCausalLM.from_pretrained(
llm_model_name,
torch_dtype=torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
# If no GPU, move to CPU
if not torch.cuda.is_available():
model = model.to("cpu")
print("LLM model loaded successfully!")
return model, tokenizer
except Exception as e:
print(f"Error loading LLM: {e}")
return None, None
# ==================== LOAD ALL MODELS ====================
print("\n" + "="*60)
print("🚀 LOADING ALL MODELS")
print("="*60)
translator_pular_to_french = load_pular_to_french() # NEW
translator_french_to_pular = load_french_to_pular() # EXISTING
llm_model, llm_tokenizer = load_llm() # EXISTING
# Check if models loaded
use_llm = llm_model is not None and llm_tokenizer is not None
# ==================== TRANSLATION FUNCTIONS ====================
def translate_pular_to_french(pular_text):
"""Translate Pular text to French"""
if not translator_pular_to_french:
return "Erreur: Modèle Pular→Français non disponible."
if not pular_text or len(pular_text.strip()) == 0:
return ""
try:
# Clean the Pular text
clean_pular = pular_text.strip()
clean_pular = re.sub(r'\s+', ' ', clean_pular)
clean_pular = clean_pular[:300] # Limit length
print(f"Translating Pular→French: {clean_pular[:100]}...")
# Translate
result = translator_pular_to_french(clean_pular, max_length=256)
# Extract translation
if isinstance(result, list) and len(result) > 0:
if isinstance(result[0], dict) and "translation_text" in result[0]:
french_text = result[0]["translation_text"]
elif isinstance(result[0], str):
french_text = result[0]
else:
french_text = str(result[0])
elif isinstance(result, dict) and "translation_text" in result:
french_text = result["translation_text"]
elif isinstance(result, str):
french_text = result
else:
return "Erreur de traduction. Veuillez réessayer."
# Clean the French response
french_text = re.sub(r'\*.*?\*', '', french_text)
french_text = re.sub(r'\[.*?\]|\(.*?\)', '', french_text)
french_text = re.sub(r'\s+', ' ', french_text).strip()
print(f"Translated to French: {french_text[:100]}...")
return french_text
except Exception as e:
print(f"Pular→French translation error: {e}")
return "Erreur technique lors de la traduction."
def translate_french_to_pular(french_text):
"""Translate French text to Pular"""
if not translator_french_to_pular:
return "Hakkunde ndee, mi wadataa."
if not french_text or len(french_text.strip()) == 0:
return ""
try:
# Clean the French text
clean_french = french_text.strip()
clean_french = re.sub(r'\*+', '', clean_french)
clean_french = re.sub(r'\s+', ' ', clean_french)
clean_french = clean_french[:300] # Limit length
print(f"Translating French→Pular: {clean_french[:100]}...")
# Translate
result = translator_french_to_pular(clean_french, max_length=256)
# Extract translation
if isinstance(result, list) and len(result) > 0:
if isinstance(result[0], dict) and "translation_text" in result[0]:
pular_text = result[0]["translation_text"]
elif isinstance(result[0], str):
pular_text = result[0]
else:
pular_text = str(result[0])
elif isinstance(result, dict) and "translation_text" in result:
pular_text = result["translation_text"]
elif isinstance(result, str):
pular_text = result
else:
return "Hakkunde ndee, mi wadataa."
# Clean the Pular response
pular_text = re.sub(r'\*.*?\*', '', pular_text)
pular_text = re.sub(r'\bFinsitaare\b.*', '', pular_text)
pular_text = re.sub(r'\[.*?\]|\(.*?\)', '', pular_text)
pular_text = re.sub(r'\s+', ' ', pular_text).strip()
print(f"Translated to Pular: {pular_text[:100]}...")
return pular_text
except Exception as e:
print(f"French→Pular translation error: {e}")
return "Hakkunde ndee, tontu kadi."
# ==================== EXISTING FUNCTIONS (UNCHANGED) ====================
system_prompt = """You are a helpful assistant . Use simple, clear language as if explaining to a young child. Provide accurate and relevant responses. Answer in French, and keep responses short and friendly. Maintenant, réponds aux questions suivantes:"""
def clean_french_response(text):
"""Clean French response before translation"""
if not text:
return ""
# Remove markdown formatting
text = re.sub(r'\*+', '', text)
text = re.sub(r'#+\s*', '', text)
text = re.sub(r'`.*?`', '', text)
text = re.sub(r'\[.*?\]\(.*?\)', '', text)
# Remove any gibberish or repeated patterns
lines = text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if not line or len(line) < 3:
continue
if re.match(r'^[^a-zA-Z0-9\s]*$', line):
continue
clean_lines.append(line)
# Take the first meaningful sentence/paragraph
if clean_lines:
response = clean_lines[0]
else:
response = text[:200]
# Ensure it ends with proper punctuation
if response and not response[-1] in '.!?':
response = response + '.'
return response.strip()
def generate_french_response(user_input, history=None):
"""Generate French response using the actual LLM with improved prompting"""
if not use_llm:
fallback_responses = [
"Je comprends votre question. Pouvez-vous la reformuler?",
"Je vais chercher cette information pour vous.",
"C'est une question intéressante. Laissez-moi y réfléchir.",
"Je peux vous aider avec cela. Un moment s'il vous plaît.",
"Merci pour votre question. Voici ce que je peux vous dire à ce sujet."
]
import random
return random.choice(fallback_responses)
try:
# Build a cleaner prompt
prompt = f"{system_prompt}\n\n"
# Add conversation history if available (simplified)
if history and len(history) > 0:
recent = history[-2:] if len(history) >= 2 else history
for msg in recent:
if msg["role"] == "user":
prompt += f"Question: {msg['content']}\n"
elif msg["role"] == "assistant":
prompt += f"Réponse: {msg['content']}\n"
# Add current user input
prompt += f"Question: {user_input}\nRéponse:"
print(f"\nPrompt (first 500 chars): {prompt[:500]}...")
# Tokenize
inputs = llm_tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512
)
# Move inputs to the same device as model
device = llm_model.device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate response with conservative settings
with torch.no_grad():
outputs = llm_model.generate(
**inputs,
max_new_tokens=100,
do_sample=True,
temperature=0.5,
top_p=0.9,
top_k=50,
pad_token_id=llm_tokenizer.pad_token_id,
eos_token_id=llm_tokenizer.eos_token_id,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)
# Decode the response
response = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
if "Réponse:" in response:
parts = response.split("Réponse:")
french_response = parts[-1].strip()
else:
french_response = response[len(prompt):].strip()
# Clean the response
french_response = clean_french_response(french_response)
# Ensure we have a response
if not french_response or len(french_response) < 5:
french_response = "Je ne peux pas répondre à cette question pour le moment."
print(f"Generated French response: {french_response[:150]}...")
return french_response[:250]
except Exception as e:
print(f"Error generating French response: {e}")
return "Je rencontre des difficultés techniques. Pouvez-vous reformuler votre question?"
def chat_function(user_input, chat_history):
"""Main chat function with improved response handling"""
if not user_input.strip():
return chat_history, ""
try:
print(f"\n{'='*50}")
print(f"User input: {user_input}")
# Generate French response using LLM
french_response = generate_french_response(user_input, chat_history)
print(f"French response: {french_response}")
# Translate to Pular
pular_response = translate_french_to_pular(french_response)
print(f"Pular response: {pular_response}")
print(f"{'='*50}\n")
# Add to chat history
chat_history.append({"role": "user", "content": user_input})
chat_history.append({"role": "assistant", "content": pular_response})
# Prepare details
details = f"**🇫🇷 Français:** {french_response}\n\n**🌍 Pular:** {pular_response}"
return chat_history, details
except Exception as e:
print(f"Chat error: {e}")
error_msg = "Jaabi hakkunde ndee, mi wadataa. Tontu kadi."
chat_history.append({"role": "user", "content": user_input})
chat_history.append({"role": "assistant", "content": error_msg})
details = f"**Erreur technique:** Veuillez réessayer."
return chat_history, details
# ==================== GRADIO INTERFACE ====================
with gr.Blocks(
title="🤖 Chatbot Français-Pular avec IA - BIDIRECTIONNEL",
theme=gr.themes.Soft(),
css="""
.gradio-container {max-width: 900px; margin: auto;}
.chatbot {min-height: 400px;}
.details-box {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 15px;
border-radius: 10px;
margin-top: 15px;
border: 2px solid #4a5568;
}
.warning-box {
background: #fff3cd;
border: 1px solid #ffeaa7;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
.example-btn {
margin: 2px;
font-size: 12px;
}
.translation-card {
background: #f8f9fa;
padding: 15px;
border-radius: 10px;
border: 1px solid #dee2e6;
margin: 10px 0;
}
"""
) as demo:
gr.Markdown("""
# 🇫🇷 ↔ 🌍 Chatbot Français-Pular avec IA - BIDIRECTIONNEL
### Un assistant intelligent avec traduction dans les deux sens
""")
# Status indicators
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📊 Statut du système")
status_html = f"""
<div style='background: #e8f5e9; padding: 10px; border-radius: 5px; margin: 5px 0;'>
<strong>🤖 Modèle IA (Gemma-2-2B):</strong> {'<span style="color: green;">✅ Actif</span>' if use_llm else '<span style="color: orange;">⚠️ Basique</span>'}
</div>
<div style='background: #e3f2fd; padding: 10px; border-radius: 5px; margin: 5px 0;'>
<strong>🔤 Traducteur Pular→Français (mlamined/pl_fr_104):</strong> {'<span style="color: green;">✅ Actif</span>' if translator_pular_to_french else '<span style="color: red;">❌ Erreur</span>'}
</div>
<div style='background: #e3f2fd; padding: 10px; border-radius: 5px; margin: 5px 0;'>
<strong>🔤 Traducteur Français→Pular (mlamined/fr_pl_130):</strong> {'<span style="color: green;">✅ Actif</span>' if translator_french_to_pular else '<span style="color: red;">❌ Erreur</span>'}
</div>
<div style='background: #fff3e0; padding: 10px; border-radius: 5px; margin: 5px 0;'>
<strong>⚡ Performance:</strong> {'<span style="color: orange;">CPU</span>' if not torch.cuda.is_available() else '<span style="color: green;">GPU</span>'}
</div>
"""
gr.HTML(status_html)
with gr.Tabs():
with gr.TabItem("💬 Chat Intelligent", id="chat"):
chatbot = gr.Chatbot(
label="Conversation",
height=400,
type="messages",
avatar_images=("👤", "🤖"),
show_label=True
)
state = gr.State([])
with gr.Row():
msg = gr.Textbox(
label="Votre message en français",
placeholder="Posez n'importe quelle question ou dites quelque chose...",
scale=4,
max_lines=3,
elem_id="user_input"
)
submit_btn = gr.Button("Envoyer ➤", variant="primary", scale=1, elem_id="send_button")
with gr.Row():
clear_btn = gr.Button("🗑️ Effacer", variant="secondary", size="sm")
show_details = gr.Checkbox(label="📋 Afficher les détails", value=True)
gr.Column(scale=4, min_width=0)
details_output = gr.Markdown(
label="Détails de la réponse",
elem_classes="details-box",
visible=True
)
# Example conversation starters
gr.Markdown("### 💡 Exemples pour commencer:")
with gr.Row():
example_buttons = []
examples = [
"Donne moi cinq leçons de vie?",
"Redige-moi",
"Explique-moi l'importance de l'éducation",
"Raconte-moi une courte histoire",
"Ecris-moi une lettre pour demander de l'aide à un ami?"
]
for example in examples:
btn = gr.Button(example, size="sm", variant="secondary", elem_classes="example-btn")
example_buttons.append(btn)
# Chat functionality
def respond(message, history, show_details_flag):
if not message.strip():
return "", history, gr.update(value="", visible=False)
history, details = chat_function(message, history)
return "", history, gr.update(value=details, visible=show_details_flag)
def clear_chat():
return [], gr.update(value="", visible=False)
# Connect events
msg.submit(
respond,
[msg, state, show_details],
[msg, chatbot, details_output]
)
submit_btn.click(
respond,
[msg, state, show_details],
[msg, chatbot, details_output]
)
clear_btn.click(
clear_chat,
None,
[chatbot, details_output]
)
# Connect example buttons
for i, btn in enumerate(example_buttons):
btn.click(
fn=lambda ex=examples[i]: ex,
inputs=None,
outputs=msg
).then(
fn=respond,
inputs=[msg, state, show_details],
outputs=[msg, chatbot, details_output]
)
with gr.TabItem("🔤 Traducteur Bidirectionnel", id="translate"):
gr.Markdown("""
### Traduction dans les deux sens
**🇫🇷 Français → 🌍 Pular** et **🌍 Pular → 🇫🇷 Français**
""")
with gr.Row():
# French to Pular translation
with gr.Column():
gr.Markdown("#### 🇫🇷 → 🌍 Français vers Pular")
french_input_ftop = gr.Textbox(
label="Texte français",
placeholder="Entrez du texte français à traduire en pular...",
lines=4
)
with gr.Row():
translate_fr_to_pl = gr.Button("Traduire 🇫🇷→🌍", variant="primary")
clear_fr_to_pl = gr.Button("Effacer", variant="secondary")
pular_output = gr.Textbox(
label="Traduction pular",
lines=4,
interactive=False
)
# Pular to French translation (NEW)
with gr.Column():
gr.Markdown("#### 🌍 → 🇫🇷 Pular vers Français")
pular_input_ptof = gr.Textbox(
label="Texte pular",
placeholder="Entrez du texte pular à traduire en français...",
lines=4
)
with gr.Row():
translate_pl_to_fr = gr.Button("Traduire 🌍→🇫🇷", variant="primary")
clear_pl_to_fr = gr.Button("Effacer", variant="secondary")
french_output = gr.Textbox(
label="Traduction française",
lines=4,
interactive=False
)
# Connect buttons
# French to Pular
translate_fr_to_pl.click(
translate_french_to_pular,
inputs=french_input_ftop,
outputs=pular_output
)
french_input_ftop.submit(
translate_french_to_pular,
inputs=french_input_ftop,
outputs=pular_output
)
clear_fr_to_pl.click(
lambda: ("", ""),
None,
[french_input_ftop, pular_output]
)
# Pular to French (NEW)
translate_pl_to_fr.click(
translate_pular_to_french,
inputs=pular_input_ptof,
outputs=french_output
)
pular_input_ptof.submit(
translate_pular_to_french,
inputs=pular_input_ptof,
outputs=french_output
)
clear_pl_to_fr.click(
lambda: ("", ""),
None,
[pular_input_ptof, french_output]
)
gr.Markdown("### 📝 Exemples rapides")
with gr.Row():
# French to Pular examples
with gr.Column():
gr.Markdown("**Exemples Français→Pular:**")
fr_to_pl_examples = gr.Examples(
examples=[
["Bonjour, je m'appelle Mamadou et je suis guinéen."],
["L'éducation est la clé du développement d'un pays."],
["La culture guinéenne est riche et diversifiée."]
],
inputs=french_input_ftop,
outputs=pular_output,
fn=translate_french_to_pular,
cache_examples=True,
label="Cliquez sur un exemple"
)
# Pular to French examples (NEW)
with gr.Column():
gr.Markdown("**Exemples Pular→Français:**")
pl_to_fr_examples = gr.Examples(
examples=[
["On jaaraama musee Alpha."],
["Miɗo weelaa."],
["Jannde ko saabi fii ɓantal leydi."]
],
inputs=pular_input_ptof,
outputs=french_output,
fn=translate_pular_to_french,
cache_examples=True,
label="Cliquez sur un exemple"
)
gr.Markdown("---")
gr.Markdown("""
### ℹ️ À propos de ce système
**Nouveautés:**
- ✅ **Traduction Pular→Français** ajoutée (mlamined/pl_fr_104)
- 🔄 **Traduction bidirectionnelle** complète
- 🚀 **Deux modèles de traduction** indépendants
**Fonctionnement:**
1. Vous écrivez en français ou en pular
2. Le système traduit dans la direction choisie
3. Pour le chat: français → IA → pular
**Capacités:**
- Réponses intelligentes et contextuelles
- Traduction précise dans les deux sens
- Interface intuitive et facile à utiliser
**Note:** Les réponses peuvent prendre quelques secondes à générer sur CPU.
""")
if __name__ == "__main__":
print("=" * 60)
print("🚀 DÉMARRAGE DU CHATBOT BIDIRECTIONNEL")
print(f"📊 Statut LLM: {'✅ Prêt' if use_llm else '❌ Échec'}")
print(f"📊 Statut traducteur Pular→Français: {'✅ Prêt' if translator_pular_to_french else '❌ Échec'}")
print(f"📊 Statut traducteur Français→Pular: {'✅ Prêt' if translator_french_to_pular else '❌ Échec'}")
print(f"⚡ Matériel: {'GPU' if torch.cuda.is_available() else 'CPU'}")
print("=" * 60)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=False,
show_error=True
) |