Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,55 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoConfig, AutoModelForCausalLM
|
| 4 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
| 5 |
from janus.utils.io import load_pil_images
|
| 6 |
from PIL import Image
|
| 7 |
-
import numpy as np
|
| 8 |
-
import os
|
| 9 |
-
import time
|
| 10 |
import spaces
|
|
|
|
| 11 |
|
| 12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
model_path = "deepseek-ai/Janus-Pro-1B"
|
| 14 |
config = AutoConfig.from_pretrained(model_path)
|
| 15 |
language_config = config.language_config
|
| 16 |
language_config._attn_implementation = 'eager'
|
| 17 |
|
| 18 |
-
# Initialize model with medical
|
| 19 |
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
| 20 |
model_path,
|
| 21 |
language_config=language_config,
|
| 22 |
trust_remote_code=True,
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
).to(torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if torch.cuda.is_available():
|
| 27 |
vl_gpt = vl_gpt.cuda()
|
| 28 |
|
|
@@ -30,27 +57,41 @@ vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
|
| 30 |
tokenizer = vl_chat_processor.tokenizer
|
| 31 |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
@torch.inference_mode()
|
| 34 |
@spaces.GPU(duration=120)
|
| 35 |
-
def medical_image_analysis(
|
| 36 |
-
"""Analyze medical images (CT, MRI, X-ray, histopathology) with clinical context."""
|
| 37 |
torch.cuda.empty_cache()
|
| 38 |
torch.manual_seed(seed)
|
| 39 |
|
| 40 |
-
#
|
|
|
|
|
|
|
| 41 |
conversation = [{
|
| 42 |
"role": "<|Radiologist|>",
|
| 43 |
-
"content": f"<medical_image>\nClinical Context: {
|
| 44 |
"images": [medical_image],
|
| 45 |
}, {"role": "<|AI_Assistant|>", "content": ""}]
|
| 46 |
|
| 47 |
-
processed_image = [Image.fromarray(medical_image)]
|
| 48 |
inputs = vl_chat_processor(
|
| 49 |
-
conversations=conversation,
|
| 50 |
-
images=
|
| 51 |
force_batchify=True
|
| 52 |
-
).to(cuda_device
|
| 53 |
-
|
| 54 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**inputs)
|
| 55 |
|
| 56 |
# Medical-optimized generation parameters
|
|
@@ -58,115 +99,161 @@ def medical_image_analysis(medical_image, clinical_question, seed, top_p, temper
|
|
| 58 |
inputs_embeds=inputs_embeds,
|
| 59 |
attention_mask=inputs.attention_mask,
|
| 60 |
max_new_tokens=512,
|
| 61 |
-
temperature=0.2,
|
| 62 |
top_p=0.9,
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
| 70 |
@torch.inference_mode()
|
| 71 |
@spaces.GPU(duration=120)
|
| 72 |
-
def generate_medical_image(prompt, seed=
|
| 73 |
-
"""Generate synthetic medical images for educational/research purposes."""
|
| 74 |
torch.cuda.empty_cache()
|
| 75 |
if seed is not None:
|
| 76 |
torch.manual_seed(seed)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
medical_config = {
|
| 80 |
-
'width': 512,
|
| 81 |
-
'height': 512,
|
| 82 |
-
'parallel_size': 3,
|
| 83 |
-
'modality': 'mri', # Can specify CT, X-ray, etc.
|
| 84 |
-
'anatomy': 'brain' # Target anatomy
|
| 85 |
-
}
|
| 86 |
|
| 87 |
messages = [{
|
| 88 |
'role': '<|Clinician|>',
|
| 89 |
-
'content':
|
| 90 |
}]
|
| 91 |
|
| 92 |
-
text = vl_chat_processor.
|
| 93 |
messages,
|
| 94 |
-
system_prompt='Generate
|
| 95 |
)
|
| 96 |
|
| 97 |
input_ids = torch.LongTensor(tokenizer.encode(text)).to(cuda_device)
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
input_ids,
|
| 100 |
-
|
|
|
|
| 101 |
cfg_weight=guidance,
|
| 102 |
-
temperature=
|
|
|
|
|
|
|
|
|
|
| 103 |
)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
synthetic_images = postprocess_medical_images(patches, **medical_config)
|
| 107 |
return [Image.fromarray(img).resize((512, 512)) for img in synthetic_images]
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
with gr.Tab("Clinical Image Analysis"):
|
|
|
|
| 115 |
with gr.Row():
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
examples=[
|
| 130 |
-
["Identify pulmonary nodules in this CT scan", "ct_chest.png"],
|
| 131 |
-
["Assess MRI for multiple sclerosis lesions", "brain_mri.jpg"],
|
| 132 |
-
["Histopathology analysis: tumor grading", "biopsy_slide.png"]
|
| 133 |
-
],
|
| 134 |
-
inputs=[clinical_question, medical_image_input]
|
| 135 |
-
)
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
| 142 |
with gr.Row():
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
#
|
| 160 |
analysis_btn.click(
|
| 161 |
medical_image_analysis,
|
| 162 |
-
|
| 163 |
-
|
| 164 |
)
|
| 165 |
|
| 166 |
-
|
| 167 |
generate_medical_image,
|
| 168 |
-
|
| 169 |
-
|
| 170 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
demo.launch(share=True, server_port=7860)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
from transformers import AutoConfig, AutoModelForCausalLM
|
| 5 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
| 6 |
from janus.utils.io import load_pil_images
|
| 7 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 8 |
import spaces
|
| 9 |
+
from torchvision import transforms
|
| 10 |
|
| 11 |
+
# Medical Imaging Configuration
|
| 12 |
+
MEDICAL_CONFIG = {
|
| 13 |
+
"modality": "CT", # Default imaging modality
|
| 14 |
+
"anatomical_region": "Chest",
|
| 15 |
+
"clinical_task": "analysis",
|
| 16 |
+
"report_style": "structured"
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
# Load base model
|
| 20 |
model_path = "deepseek-ai/Janus-Pro-1B"
|
| 21 |
config = AutoConfig.from_pretrained(model_path)
|
| 22 |
language_config = config.language_config
|
| 23 |
language_config._attn_implementation = 'eager'
|
| 24 |
|
| 25 |
+
# Initialize model with medical adaptations
|
| 26 |
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
| 27 |
model_path,
|
| 28 |
language_config=language_config,
|
| 29 |
trust_remote_code=True,
|
| 30 |
+
hidden_dropout_prob=0.1,
|
| 31 |
+
attention_probs_dropout_prob=0.1,
|
| 32 |
+
output_attentions=True
|
| 33 |
).to(torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
| 34 |
|
| 35 |
+
# Add medical projection layer
|
| 36 |
+
class MedicalProjectionWrapper(torch.nn.Module):
|
| 37 |
+
def __init__(self, base_model):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.base_model = base_model
|
| 40 |
+
self.medical_proj = torch.nn.Linear(
|
| 41 |
+
base_model.config.hidden_size,
|
| 42 |
+
base_model.config.hidden_size * 2
|
| 43 |
+
)
|
| 44 |
+
self.activation = torch.nn.GELU()
|
| 45 |
+
|
| 46 |
+
def forward(self, *args, **kwargs):
|
| 47 |
+
outputs = self.base_model(*args, **kwargs)
|
| 48 |
+
medical_rep = self.activation(self.medical_proj(outputs.last_hidden_state))
|
| 49 |
+
return outputs.__class__(last_hidden_state=medical_rep)
|
| 50 |
+
|
| 51 |
+
vl_gpt.language_model = MedicalProjectionWrapper(vl_gpt.language_model)
|
| 52 |
+
|
| 53 |
if torch.cuda.is_available():
|
| 54 |
vl_gpt = vl_gpt.cuda()
|
| 55 |
|
|
|
|
| 57 |
tokenizer = vl_chat_processor.tokenizer
|
| 58 |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 59 |
|
| 60 |
+
# Medical image preprocessing
|
| 61 |
+
def preprocess_medical_image(image):
|
| 62 |
+
if isinstance(image, np.ndarray):
|
| 63 |
+
image = Image.fromarray(image)
|
| 64 |
+
|
| 65 |
+
medical_transforms = transforms.Compose([
|
| 66 |
+
transforms.Resize((512, 512)),
|
| 67 |
+
transforms.Grayscale(num_output_channels=3),
|
| 68 |
+
transforms.ToTensor(),
|
| 69 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 70 |
+
])
|
| 71 |
+
|
| 72 |
+
return medical_transforms(image).unsqueeze(0).to(cuda_device)
|
| 73 |
+
|
| 74 |
@torch.inference_mode()
|
| 75 |
@spaces.GPU(duration=120)
|
| 76 |
+
def medical_image_analysis(image, clinical_query, seed=42):
|
|
|
|
| 77 |
torch.cuda.empty_cache()
|
| 78 |
torch.manual_seed(seed)
|
| 79 |
|
| 80 |
+
# Preprocess with medical transformations
|
| 81 |
+
medical_image = preprocess_medical_image(image)
|
| 82 |
+
|
| 83 |
conversation = [{
|
| 84 |
"role": "<|Radiologist|>",
|
| 85 |
+
"content": f"<medical_image>\nClinical Context: {clinical_query}",
|
| 86 |
"images": [medical_image],
|
| 87 |
}, {"role": "<|AI_Assistant|>", "content": ""}]
|
| 88 |
|
|
|
|
| 89 |
inputs = vl_chat_processor(
|
| 90 |
+
conversations=conversation,
|
| 91 |
+
images=[Image.fromarray(image)],
|
| 92 |
force_batchify=True
|
| 93 |
+
).to(cuda_device)
|
| 94 |
+
|
| 95 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**inputs)
|
| 96 |
|
| 97 |
# Medical-optimized generation parameters
|
|
|
|
| 99 |
inputs_embeds=inputs_embeds,
|
| 100 |
attention_mask=inputs.attention_mask,
|
| 101 |
max_new_tokens=512,
|
| 102 |
+
temperature=0.2,
|
| 103 |
top_p=0.9,
|
| 104 |
+
num_beams=5,
|
| 105 |
+
repetition_penalty=1.5,
|
| 106 |
+
early_stopping=True
|
| 107 |
)
|
| 108 |
|
| 109 |
+
report = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
| 110 |
+
return format_medical_report(report)
|
| 111 |
+
|
| 112 |
+
def format_medical_report(raw_text):
|
| 113 |
+
sections = {
|
| 114 |
+
"Findings": "",
|
| 115 |
+
"Impression": "",
|
| 116 |
+
"Recommendations": ""
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
current_section = None
|
| 120 |
+
for line in raw_text.split('\n'):
|
| 121 |
+
if "FINDINGS:" in line:
|
| 122 |
+
current_section = "Findings"
|
| 123 |
+
elif "IMPRESSION:" in line:
|
| 124 |
+
current_section = "Impression"
|
| 125 |
+
elif "RECOMMENDATIONS:" in line:
|
| 126 |
+
current_section = "Recommendations"
|
| 127 |
+
elif current_section:
|
| 128 |
+
sections[current_section] += line.strip() + '\n'
|
| 129 |
+
|
| 130 |
+
return f"""**Clinical Report**
|
| 131 |
+
|
| 132 |
+
**Findings:**
|
| 133 |
+
{sections['Findings'] or 'No significant findings'}
|
| 134 |
+
|
| 135 |
+
**Impression:**
|
| 136 |
+
{sections['Impression'] or 'No conclusive diagnosis'}
|
| 137 |
+
|
| 138 |
+
**Recommendations:**
|
| 139 |
+
{sections['Recommendations'] or 'Follow-up as clinically indicated'}"""
|
| 140 |
|
| 141 |
+
# Medical image generation components
|
| 142 |
@torch.inference_mode()
|
| 143 |
@spaces.GPU(duration=120)
|
| 144 |
+
def generate_medical_image(prompt, seed=12345, guidance=7, temperature=0.6):
|
|
|
|
| 145 |
torch.cuda.empty_cache()
|
| 146 |
if seed is not None:
|
| 147 |
torch.manual_seed(seed)
|
| 148 |
+
|
| 149 |
+
medical_prompt = f"{prompt} [Modality: {MEDICAL_CONFIG['modality']}, Anatomy: {MEDICAL_CONFIG['anatomical_region']}]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
messages = [{
|
| 152 |
'role': '<|Clinician|>',
|
| 153 |
+
'content': medical_prompt
|
| 154 |
}]
|
| 155 |
|
| 156 |
+
text = vl_chat_processor.apply_chat_template(
|
| 157 |
messages,
|
| 158 |
+
system_prompt='Generate educational medical imaging data'
|
| 159 |
)
|
| 160 |
|
| 161 |
input_ids = torch.LongTensor(tokenizer.encode(text)).to(cuda_device)
|
| 162 |
+
|
| 163 |
+
# Medical image generation parameters
|
| 164 |
+
generated_tokens, patches = vl_gpt.generate(
|
| 165 |
input_ids,
|
| 166 |
+
width=512,
|
| 167 |
+
height=512,
|
| 168 |
cfg_weight=guidance,
|
| 169 |
+
temperature=temperature,
|
| 170 |
+
parallel_size=3,
|
| 171 |
+
image_token_num_per_image=576,
|
| 172 |
+
patch_size=16
|
| 173 |
)
|
| 174 |
|
| 175 |
+
synthetic_images = postprocess_medical_images(patches)
|
|
|
|
| 176 |
return [Image.fromarray(img).resize((512, 512)) for img in synthetic_images]
|
| 177 |
|
| 178 |
+
def postprocess_medical_images(patches):
|
| 179 |
+
patches = patches.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
| 180 |
+
patches = np.clip((patches + 1) / 2 * 255, 0, 255).astype(np.uint8)
|
| 181 |
+
return [patches[i] for i in range(patches.shape[0])]
|
| 182 |
+
|
| 183 |
+
# Medical-optimized interface
|
| 184 |
+
with gr.Blocks(title="Medical Imaging AI", theme=gr.themes.Soft()) as demo:
|
| 185 |
+
gr.Markdown("""## Medical Imaging Analysis Suite v3.2
|
| 186 |
+
*Research use only - Not for clinical decision-making*""")
|
| 187 |
|
| 188 |
with gr.Tab("Clinical Image Analysis"):
|
| 189 |
+
gr.Markdown("### Upload medical scan and clinical context")
|
| 190 |
with gr.Row():
|
| 191 |
+
with gr.Column(scale=1):
|
| 192 |
+
med_image = gr.Image(label="Medical Imaging Study", type="numpy")
|
| 193 |
+
med_upload_btns = gr.Row([
|
| 194 |
+
gr.Button("CT Scan"),
|
| 195 |
+
gr.Button("MRI"),
|
| 196 |
+
gr.Button("X-ray")
|
| 197 |
+
])
|
| 198 |
+
|
| 199 |
+
with gr.Column(scale=2):
|
| 200 |
+
clinical_input = gr.Textbox(label="Clinical Context", lines=3,
|
| 201 |
+
placeholder="Patient history and clinical question...")
|
| 202 |
+
analysis_btn = gr.Button("Analyze Study", variant="primary")
|
| 203 |
+
report_output = gr.Markdown(label="AI Analysis Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
gr.Examples([
|
| 206 |
+
["Evaluate lung nodules in this CT scan", "ct_chest.png"],
|
| 207 |
+
["Assess brain MRI for metastatic lesions", "brain_mri.jpg"],
|
| 208 |
+
["Analyze bone structure in this wrist X-ray", "wrist_xray.png"]
|
| 209 |
+
], [clinical_input, med_image])
|
| 210 |
+
|
| 211 |
+
with gr.Tab("Educational Image Synthesis"):
|
| 212 |
+
gr.Markdown("### Generate synthetic medical images for training")
|
| 213 |
with gr.Row():
|
| 214 |
+
with gr.Column():
|
| 215 |
+
synth_prompt = gr.Textbox(label="Synthesis Prompt", lines=2,
|
| 216 |
+
placeholder="Describe the desired medical image...")
|
| 217 |
+
gr.Markdown("**Modality Options**")
|
| 218 |
+
modality_btns = gr.Row([
|
| 219 |
+
gr.Button("CT"),
|
| 220 |
+
gr.Button("MRI"),
|
| 221 |
+
gr.Button("X-ray")
|
| 222 |
+
])
|
| 223 |
+
|
| 224 |
+
with gr.Column():
|
| 225 |
+
synth_params = gr.Accordion("Advanced Parameters", open=False)
|
| 226 |
+
with synth_params:
|
| 227 |
+
gr.Row([
|
| 228 |
+
gr.Slider(3, 7, 5, label="Anatomical Accuracy"),
|
| 229 |
+
gr.Slider(0.3, 1.0, 0.6, label="Synthesis Variability")
|
| 230 |
+
])
|
| 231 |
+
generate_btn = gr.Button("Generate Educational Images", variant="secondary")
|
| 232 |
+
|
| 233 |
+
synth_gallery = gr.Gallery(label="Synthetic Images", columns=3, height=400)
|
| 234 |
|
| 235 |
+
# Event handlers
|
| 236 |
analysis_btn.click(
|
| 237 |
medical_image_analysis,
|
| 238 |
+
[med_image, clinical_input],
|
| 239 |
+
report_output
|
| 240 |
)
|
| 241 |
|
| 242 |
+
generate_btn.click(
|
| 243 |
generate_medical_image,
|
| 244 |
+
[synth_prompt, synth_params],
|
| 245 |
+
synth_gallery
|
| 246 |
)
|
| 247 |
+
|
| 248 |
+
for btn in [*med_upload_btns.children, *modality_btns.children]:
|
| 249 |
+
btn.click(
|
| 250 |
+
lambda m: MEDICAL_CONFIG.update(modality=m),
|
| 251 |
+
[btn],
|
| 252 |
+
None
|
| 253 |
+
).then(
|
| 254 |
+
lambda: gr.Info(f"Modality set to {MEDICAL_CONFIG['modality']}"),
|
| 255 |
+
None,
|
| 256 |
+
None
|
| 257 |
+
)
|
| 258 |
|
| 259 |
demo.launch(share=True, server_port=7860)
|