Spaces:
Runtime error
Runtime error
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoProcessor, AutoModel | |
| import torch.nn.functional as F | |
| #--------------------------------- | |
| #++++++++ Model ++++++++++ | |
| #--------------------------------- | |
| def load_biomedclip_model(): | |
| """Loads the BiomedCLIP model and tokenizer.""" | |
| biomedclip_model_name = 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224' | |
| processor = AutoProcessor.from_pretrained(biomedclip_model_name) | |
| model = AutoModel.from_pretrained(biomedclip_model_name).cuda().eval() | |
| return model, processor | |
| def compute_similarity(image, text, biomedclip_model, biomedclip_processor): | |
| """Computes similarity scores using BiomedCLIP.""" | |
| with torch.no_grad(): | |
| inputs = biomedclip_processor(text=text, images=image, return_tensors="pt", padding=True).to(biomedclip_model.device) | |
| outputs = biomedclip_model(**inputs) | |
| image_embeds = outputs.image_embeds | |
| text_embeds = outputs.text_embeds | |
| image_embeds = F.normalize(image_embeds, dim=-1) | |
| text_embeds = F.normalize(text_embeds, dim=-1) | |
| similarity = (text_embeds @ image_embeds.transpose(-1, -2)).squeeze() | |
| return similarity | |
| #--------------------------------- | |
| #++++++++ Gradio ++++++++++ | |
| #--------------------------------- | |
| def gradio_reset(chat_state, img_list, similarity_output): | |
| """Resets the chat state and image list.""" | |
| if chat_state is not None: | |
| chat_state.messages = [] | |
| if img_list is not None: | |
| img_list = [] | |
| return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your medical image first', interactive=False), gr.update(value="Upload & Start Analysis", interactive=True), chat_state, img_list, gr.update(value="", visible=False) | |
| def upload_img(gr_img, text_input, chat_state, similarity_output): | |
| """Handles image upload.""" | |
| if gr_img is None: | |
| return None, None, gr.update(interactive=True), chat_state, None, gr.update(visible=False) | |
| img_list = [gr_img] | |
| return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Analysis", interactive=False), chat_state, img_list, gr.update(visible=True) | |
| def gradio_ask(user_message, chatbot, chat_state): | |
| """Handles user input.""" | |
| if not user_message: | |
| return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
| chatbot = chatbot + [[user_message, None]] | |
| return '', chatbot, chat_state | |
| def gradio_answer(chatbot, chat_state, img_list, biomedclip_model, biomedclip_processor, similarity_output): | |
| """Computes and displays similarity scores.""" | |
| if not img_list: | |
| return chatbot, chat_state, img_list, similarity_output | |
| similarity_score = compute_similarity(img_list[0], chatbot[-1][0], biomedclip_model, biomedclip_processor) | |
| print(f'Similarity Score is: {similarity_score}') | |
| similarity_text = f"Similarity Score: {similarity_score:.3f}" | |
| chatbot[-1][1] = similarity_text | |
| return chatbot, chat_state, img_list, gr.update(value=similarity_text, visible=True) | |
| title = """<h1 align="center">Medical Image Analysis Tool</h1>""" | |
| description = """<h3>Upload medical images, ask questions, and receive a similarity score.</h3>""" | |
| examples_list=[ | |
| ["./case1.png", "Analyze the X-ray for any abnormalities."], | |
| ["./case2.jpg", "What type of disease may be present?"], | |
| ["./case1.png","What is the anatomical structure shown here?"] | |
| ] | |
| # Load models and related resources outside of the Gradio block for loading on startup | |
| biomedclip_model, biomedclip_processor = load_biomedclip_model() | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(scale=0.5): | |
| image = gr.Image(type="pil", label="Medical Image") | |
| upload_button = gr.Button(value="Upload & Start Analysis", interactive=True, variant="primary") | |
| clear = gr.Button("Restart") | |
| with gr.Column(): | |
| chat_state = gr.State() | |
| img_list = gr.State() | |
| chatbot = gr.Chatbot(label='Medical Analysis') | |
| text_input = gr.Textbox(label='Analysis Query', placeholder='Please upload your medical image first', interactive=False) | |
| similarity_output = gr.Textbox(label="Similarity Score", visible=False, interactive=False) | |
| gr.Examples(examples=examples_list, inputs=[image, text_input]) | |
| upload_button.click(upload_img, [image, text_input, chat_state, similarity_output], [image, text_input, upload_button, chat_state, img_list, similarity_output]) | |
| text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
| gradio_answer, [chatbot, chat_state, img_list, biomedclip_model, biomedclip_processor, similarity_output], [chatbot, chat_state, img_list, similarity_output] | |
| ) | |
| clear.click(gradio_reset, [chat_state, img_list, similarity_output], [chatbot, image, text_input, upload_button, chat_state, img_list, similarity_output], queue=False) | |
| demo.launch() |