Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ import nltk
|
|
| 14 |
nltk.download('punkt')
|
| 15 |
|
| 16 |
# Load model and tokenizer
|
| 17 |
-
model_name = 'dejanseo/sentiment'
|
| 18 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
|
|
@@ -40,6 +40,15 @@ background_colors = {
|
|
| 40 |
"very negative": "rgba(255, 0, 0, 0.5)"
|
| 41 |
}
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Function to get text content from a URL, restricted to Medium stories/articles
|
| 44 |
def get_text_from_url(url):
|
| 45 |
if not validators.url(url):
|
|
@@ -57,7 +66,31 @@ def get_text_from_url(url):
|
|
| 57 |
except Exception as e:
|
| 58 |
return None, f"Error extracting text: {e}"
|
| 59 |
|
| 60 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
# Streamlit UI
|
| 63 |
st.title("Sentiment Classification Model (Medium Only)")
|
|
@@ -111,9 +144,7 @@ if url:
|
|
| 111 |
)
|
| 112 |
|
| 113 |
st.write(f"Chunk {i + 1}:")
|
| 114 |
-
|
| 115 |
-
st.altair_chart(chunk_chart, use_container_width=True)
|
| 116 |
-
|
| 117 |
# Sentence-level classification with background colors
|
| 118 |
st.write("Extracted Text with Sentiment Highlights:")
|
| 119 |
sentence_scores = classify_sentences(text)
|
|
|
|
| 14 |
nltk.download('punkt')
|
| 15 |
|
| 16 |
# Load model and tokenizer
|
| 17 |
+
model_name = 'dejanseo/sentiment' #Load model adapted from
|
| 18 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
|
|
|
|
| 40 |
"very negative": "rgba(255, 0, 0, 0.5)"
|
| 41 |
}
|
| 42 |
|
| 43 |
+
# Function to classify text and return sentiment scores
|
| 44 |
+
def classify_text(text, max_length):
|
| 45 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=max_length)
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = model(**inputs)
|
| 48 |
+
logits = outputs.logits
|
| 49 |
+
probabilities = torch.softmax(logits, dim=-1).squeeze().tolist()
|
| 50 |
+
return probabilities
|
| 51 |
+
|
| 52 |
# Function to get text content from a URL, restricted to Medium stories/articles
|
| 53 |
def get_text_from_url(url):
|
| 54 |
if not validators.url(url):
|
|
|
|
| 66 |
except Exception as e:
|
| 67 |
return None, f"Error extracting text: {e}"
|
| 68 |
|
| 69 |
+
# Function to handle long texts
|
| 70 |
+
def classify_long_text(text):
|
| 71 |
+
max_length = tokenizer.model_max_length
|
| 72 |
+
# Split the text into chunks
|
| 73 |
+
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
|
| 74 |
+
aggregate_scores = [0] * len(sentiment_labels)
|
| 75 |
+
chunk_scores_list = []
|
| 76 |
+
for chunk in chunks:
|
| 77 |
+
chunk_scores = classify_text(chunk, max_length)
|
| 78 |
+
chunk_scores_list.append(chunk_scores)
|
| 79 |
+
aggregate_scores = [x + y for x, y in zip(aggregate_scores, chunk_scores)]
|
| 80 |
+
# Average the scores
|
| 81 |
+
aggregate_scores = [x / len(chunks) for x in aggregate_scores]
|
| 82 |
+
return aggregate_scores, chunk_scores_list, chunks
|
| 83 |
+
|
| 84 |
+
# Function to classify each sentence in the text
|
| 85 |
+
def classify_sentences(text):
|
| 86 |
+
sentences = sent_tokenize(text)
|
| 87 |
+
sentence_scores = []
|
| 88 |
+
for sentence in sentences:
|
| 89 |
+
scores = classify_text(sentence, tokenizer.model_max_length)
|
| 90 |
+
sentiment_idx = scores.index(max(scores))
|
| 91 |
+
sentiment = sentiment_labels[sentiment_idx]
|
| 92 |
+
sentence_scores.append((sentence, sentiment))
|
| 93 |
+
return sentence_scores
|
| 94 |
|
| 95 |
# Streamlit UI
|
| 96 |
st.title("Sentiment Classification Model (Medium Only)")
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
st.write(f"Chunk {i + 1}:")
|
| 147 |
+
|
|
|
|
|
|
|
| 148 |
# Sentence-level classification with background colors
|
| 149 |
st.write("Extracted Text with Sentiment Highlights:")
|
| 150 |
sentence_scores = classify_sentences(text)
|