Spaces:
Sleeping
Sleeping
File size: 43,097 Bytes
b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d c74169c b57c33d 8d6029e 0410a37 8d6029e 0410a37 b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e 0410a37 8d6029e 0410a37 8d6029e 0410a37 8d6029e 0410a37 8d6029e 0410a37 8d6029e 0410a37 8d6029e c74169c 8d6029e c74169c 8d6029e c74169c 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d c74169c b57c33d c74169c b57c33d c74169c b57c33d c74169c b57c33d c74169c b57c33d 8d6029e b57c33d 8d6029e c74169c b57c33d 8d6029e 0410a37 b57c33d c74169c b57c33d c74169c b57c33d c74169c b57c33d c74169c b57c33d 0410a37 b57c33d 8d6029e c74169c b57c33d c74169c b57c33d 8d6029e b57c33d c74169c b57c33d 8d6029e b57c33d 8d6029e b57c33d 8d6029e b57c33d c74169c b57c33d 8d6029e b57c33d 8d6029e b57c33d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 |
#!/usr/bin/env python3
"""
AnalysisGNN Gradio App
A Gradio interface for AnalysisGNN music analysis.
Users can upload MusicXML scores, run the model, and view results.
"""
import gradio as gr
import pandas as pd
import numpy as np
import logging
import os
import shutil
import subprocess
import tempfile
import time
import torch
import urllib.request
from concurrent.futures import ThreadPoolExecutor, as_completed
from contextlib import contextmanager
from pathlib import Path
from typing import Tuple, Optional, Dict
import traceback
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
# Import partitura and AnalysisGNN
import partitura as pt
from analysisgnn.models.analysis import ContinualAnalysisGNN
from analysisgnn.utils.chord_representations import available_representations, NoteDegree49
# Ensure additional representations are available for decoding
if "note_degree" not in available_representations and NoteDegree49 is not None:
available_representations["note_degree"] = NoteDegree49
LOG_LEVEL = os.environ.get("ANALYSISGNN_LOG_LEVEL", "INFO").upper()
logging.basicConfig(
level=getattr(logging, LOG_LEVEL, logging.INFO),
format="[%(asctime)s] %(levelname)s %(name)s: %(message)s",
)
logger = logging.getLogger("analysisgnn_app")
PARALLEL_CONFIG = os.environ.get("ANALYSISGNN_PARALLEL", "auto").strip().lower()
CPU_COUNT = os.cpu_count() or 1
MUSESCORE_APPIMAGE_URL = "https://www.modelscope.cn/studio/Genius-Society/piano_trans/resolve/master/MuseScore.AppImage"
MUSESCORE_STORAGE_DIR = Path("artifacts") / "musescore"
MUSESCORE_ENV_VAR = "MUSESCORE_BIN"
MUSESCORE_RENDER_TIMEOUT = int(os.environ.get("MUSESCORE_RENDER_TIMEOUT", "180"))
MUSESCORE_EXTRACT_TIMEOUT = int(os.environ.get("MUSESCORE_EXTRACT_TIMEOUT", "240"))
_MUSESCORE_BINARY: Optional[str] = None
_MUSESCORE_READY: bool = False
MUSESCORE_V3_APPIMAGE_URL = "https://github.com/musescore/MuseScore/releases/download/v3.6.2/MuseScore-3.6.2.548021370-x86_64.AppImage"
MUSESCORE_V3_STORAGE_DIR = Path("artifacts") / "musescore_v3"
MUSESCORE_V3_ENV_VAR = "MUSESCORE_V3_BIN"
_MUSESCORE_V3_BINARY: Optional[str] = None
RENDER_OUTPUT_DIR = Path("artifacts") / "rendered_scores"
XVFB_ENV_VAR = "XVFB_BIN"
XVFB_STORAGE_DIR = Path("artifacts") / "xvfb"
_XVFB_BINARY: Optional[str] = None
# Global model variable
MODEL = None
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info("Using device: %s", DEVICE)
if torch.cuda.is_available():
logger.info("CUDA device: %s", torch.cuda.get_device_name(0))
@contextmanager
def log_timing(label: str):
"""Log start/stop (with duration) for expensive operations."""
start = time.perf_counter()
logger.info("βΆ %s", label)
try:
yield
except Exception:
elapsed = time.perf_counter() - start
logger.exception("β %s failed after %.2fs", label, elapsed)
raise
else:
elapsed = time.perf_counter() - start
logger.info("β %s in %.2fs", label, elapsed)
def should_parallelize() -> bool:
"""
Decide whether to run analysis/visualization in parallel.
Controlled via ANALYSISGNN_PARALLEL env:
- "0"/"false": force sequential
- "1"/"true": force parallel
- "auto" (default): enable if more than one CPU core is available
"""
if PARALLEL_CONFIG in {"0", "false", "no", "off"}:
return False
if PARALLEL_CONFIG in {"1", "true", "yes", "on"}:
return True
return CPU_COUNT > 1
def download_wandb_checkpoint(artifact_path: str = "melkisedeath/AnalysisGNN/model-uvj2ddun:v1") -> str:
"""Download checkpoint from Weights & Biases, or use cached version if available."""
# Create artifacts directory structure
artifacts_dir = "checkpoint"
os.makedirs(artifacts_dir, exist_ok=True)
# Check if checkpoint already exists directly in artifacts/models
checkpoint_path = os.path.join(artifacts_dir, "model.ckpt")
if os.path.exists(checkpoint_path):
logger.info("Using cached checkpoint: %s", checkpoint_path)
return checkpoint_path
# Check for any .ckpt file in the artifacts/models directory
if os.path.exists(artifacts_dir):
for fname in os.listdir(artifacts_dir):
if fname.endswith('.ckpt'):
checkpoint_path = os.path.join(artifacts_dir, fname)
logger.info("Using cached checkpoint: %s", checkpoint_path)
return checkpoint_path
# Check artifact-specific subdirectory
artifact_dir = os.path.join(artifacts_dir, os.path.basename(artifact_path))
checkpoint_path = os.path.join(artifact_dir, "model.ckpt")
if os.path.exists(checkpoint_path):
logger.info("Using cached checkpoint: %s", checkpoint_path)
return checkpoint_path
# Only import and use wandb if checkpoint is not cached
import wandb
logger.info("Downloading checkpoint from W&B: %s", artifact_path)
# Initialize wandb in offline mode to avoid creating online runs
run = wandb.init(mode="offline")
try:
artifact = run.use_artifact(artifact_path, type='model')
with log_timing("Downloading W&B checkpoint"):
artifact_dir = artifact.download(root=artifacts_dir)
finally:
wandb.finish()
# Find the checkpoint file
checkpoint_path = os.path.join(artifact_dir, "model.ckpt")
if not os.path.exists(checkpoint_path):
for fname in os.listdir(artifact_dir):
if fname.endswith('.ckpt'):
checkpoint_path = os.path.join(artifact_dir, fname)
break
return checkpoint_path
def load_model() -> ContinualAnalysisGNN:
"""Load the AnalysisGNN model."""
global MODEL
if MODEL is None:
checkpoint_path = download_wandb_checkpoint()
logger.info("Loading model from: %s", checkpoint_path)
MODEL = ContinualAnalysisGNN.load_from_checkpoint(
checkpoint_path,
map_location=DEVICE
)
MODEL.eval()
MODEL.to(DEVICE)
logger.info("Model loaded successfully!")
return MODEL
def _format_bytes(num_bytes: float) -> str:
"""Return human readable size string."""
units = ["B", "KB", "MB", "GB", "TB"]
size = float(num_bytes)
for unit in units:
if size < 1024:
return f"{size:.1f}{unit}"
size /= 1024
return f"{size:.1f}PB"
def _download_file(url: str, destination: Path) -> bool:
"""Download a file from url to destination."""
try:
destination.parent.mkdir(parents=True, exist_ok=True)
logger.info("Starting download: %s -> %s", url, destination)
with urllib.request.urlopen(url) as response, open(destination, "wb") as out_file:
total_size = int(response.headers.get("Content-Length", 0))
downloaded = 0
chunk_size = 1024 * 256
last_log = time.perf_counter()
while True:
chunk = response.read(chunk_size)
if not chunk:
break
out_file.write(chunk)
downloaded += len(chunk)
now = time.perf_counter()
if now - last_log > 5:
pct = (downloaded / total_size * 100) if total_size else 0
logger.info(
"Downloading... %s / %s (%.1f%%)",
_format_bytes(downloaded),
_format_bytes(total_size) if total_size else "unknown",
pct,
)
last_log = now
logger.info(
"Finished download: %s (%s)",
destination,
_format_bytes(destination.stat().st_size),
)
return True
except Exception as exc:
logger.exception("Error downloading %s: %s", url, exc)
return False
def _cleanup_musescore_artifacts(remove_appimage: bool = False) -> None:
"""Remove partially extracted MuseScore artifacts to allow a clean retry."""
extract_dir = MUSESCORE_STORAGE_DIR / "squashfs-root"
if extract_dir.exists():
logger.warning("Removing stale MuseScore extract at %s", extract_dir)
shutil.rmtree(extract_dir, ignore_errors=True)
if remove_appimage:
appimage = MUSESCORE_STORAGE_DIR / "MuseScore.AppImage"
if appimage.exists():
try:
appimage.unlink()
logger.warning("Removed corrupt MuseScore AppImage at %s", appimage)
except Exception:
logger.warning("Could not remove MuseScore AppImage at %s", appimage)
def ensure_musescore_binary() -> Optional[str]:
"""Ensure a MuseScore binary is available for rendering."""
global _MUSESCORE_BINARY
if _MUSESCORE_BINARY and os.path.exists(_MUSESCORE_BINARY):
return _MUSESCORE_BINARY
env_path = os.environ.get(MUSESCORE_ENV_VAR)
if env_path and os.path.exists(env_path):
logger.info("Using MuseScore binary from %s", MUSESCORE_ENV_VAR)
_MUSESCORE_BINARY = env_path
return _MUSESCORE_BINARY
for candidate in ("mscore", "mscore3", "musescore3", "musescore", "MuseScore3"):
found = shutil.which(candidate)
if found:
logger.info("Found MuseScore executable on PATH: %s", found)
_MUSESCORE_BINARY = found
return _MUSESCORE_BINARY
MUSESCORE_STORAGE_DIR.mkdir(parents=True, exist_ok=True)
appimage_path = (MUSESCORE_STORAGE_DIR / "MuseScore.AppImage").resolve(strict=False)
apprun_path = (MUSESCORE_STORAGE_DIR / "squashfs-root" / "AppRun").resolve(strict=False)
if apprun_path.exists():
logger.info("Using cached MuseScore AppRun at %s", apprun_path)
os.environ.setdefault("QT_QPA_PLATFORM", "offscreen")
_MUSESCORE_BINARY = str(apprun_path)
return _MUSESCORE_BINARY
for attempt in (1, 2):
if not appimage_path.exists() or appimage_path.stat().st_size == 0:
logger.info("MuseScore AppImage missing. Downloading (attempt %s)...", attempt)
if not _download_file(MUSESCORE_APPIMAGE_URL, appimage_path):
return None
try:
os.chmod(appimage_path, 0o755)
except Exception as exc:
logger.warning("Could not chmod MuseScore AppImage: %s", exc)
try:
with log_timing("Extracting MuseScore AppImage"):
subprocess.run(
[str(appimage_path), "--appimage-extract"],
cwd=MUSESCORE_STORAGE_DIR,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=MUSESCORE_EXTRACT_TIMEOUT,
)
except subprocess.CalledProcessError as exc:
stderr = exc.stderr.decode(errors='ignore') if exc.stderr else str(exc)
logger.error("MuseScore extraction failed: %s", stderr)
_cleanup_musescore_artifacts(remove_appimage=(attempt == 1))
continue
except subprocess.TimeoutExpired:
logger.error("MuseScore extraction timed out after %ss", MUSESCORE_EXTRACT_TIMEOUT)
_cleanup_musescore_artifacts(remove_appimage=(attempt == 1))
continue
if apprun_path.exists():
os.environ.setdefault("QT_QPA_PLATFORM", "offscreen")
_MUSESCORE_BINARY = str(apprun_path)
try:
os.chmod(apprun_path, 0o755)
except Exception:
logger.debug("Could not chmod MuseScore AppRun; continuing anyway.")
logger.info("MuseScore AppRun ready at %s", _MUSESCORE_BINARY)
return _MUSESCORE_BINARY
logger.error("MuseScore extraction completed but AppRun was not found.")
_cleanup_musescore_artifacts(remove_appimage=(attempt == 1))
logger.error("MuseScore binary unavailable after retries.")
return None
def ensure_musescore_v3_binary() -> Optional[str]:
"""Ensure a MuseScore 3.x binary is available for rendering."""
global _MUSESCORE_V3_BINARY
if _MUSESCORE_V3_BINARY and os.path.exists(_MUSESCORE_V3_BINARY):
return _MUSESCORE_V3_BINARY
env_path = os.environ.get(MUSESCORE_V3_ENV_VAR)
if env_path and os.path.exists(env_path):
logger.info("Using MuseScore 3 binary from %s", MUSESCORE_V3_ENV_VAR)
_MUSESCORE_V3_BINARY = env_path
return _MUSESCORE_V3_BINARY
storage = MUSESCORE_V3_STORAGE_DIR
storage.mkdir(parents=True, exist_ok=True)
appimage_path = (storage / "MuseScore-3.AppImage").resolve(strict=False)
apprun_path = (storage / "squashfs-root" / "AppRun").resolve(strict=False)
if apprun_path.exists():
logger.info("Using cached MuseScore 3 AppRun at %s", apprun_path)
_MUSESCORE_V3_BINARY = str(apprun_path)
return _MUSESCORE_V3_BINARY
if not appimage_path.exists():
logger.info("MuseScore 3 AppImage missing. Downloading (first run only)...")
if not _download_file(MUSESCORE_V3_APPIMAGE_URL, appimage_path):
return None
try:
os.chmod(appimage_path, 0o755)
except Exception as exc:
logger.warning("Could not chmod MuseScore 3 AppImage: %s", exc)
try:
with log_timing("Extracting MuseScore 3 AppImage"):
subprocess.run(
[str(appimage_path), "--appimage-extract"],
cwd=storage,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=MUSESCORE_EXTRACT_TIMEOUT,
)
except subprocess.CalledProcessError as exc:
stderr = exc.stderr.decode(errors='ignore') if exc.stderr else str(exc)
logger.error("MuseScore 3 extraction failed: %s", stderr)
return None
except subprocess.TimeoutExpired:
logger.error("MuseScore 3 extraction timed out after %ss", MUSESCORE_EXTRACT_TIMEOUT)
return None
if apprun_path.exists():
_MUSESCORE_V3_BINARY = str(apprun_path)
try:
os.chmod(apprun_path, 0o755)
except Exception:
pass
logger.info("MuseScore 3 AppRun ready at %s", _MUSESCORE_V3_BINARY)
return _MUSESCORE_V3_BINARY
logger.error("MuseScore 3 extraction did not produce the expected AppRun binary.")
return None
def _download_xvfb_package(dest_dir: Path) -> Optional[Path]:
"""Download the Xvfb .deb package using apt."""
try:
completed = subprocess.run(
["apt", "download", "xvfb"],
cwd=str(dest_dir),
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
logger.debug("apt download xvfb stdout: %s", completed.stdout.strip())
if completed.stderr:
logger.debug("apt download xvfb stderr: %s", completed.stderr.strip())
except FileNotFoundError:
logger.error("'apt' command not available; cannot download Xvfb automatically.")
return None
except subprocess.CalledProcessError as exc:
logger.error(
"Failed to download Xvfb package (exit %s): %s",
exc.returncode,
exc.stderr.strip() if exc.stderr else exc,
)
return None
deb_candidates = sorted(dest_dir.glob("xvfb_*.deb"), key=lambda p: p.stat().st_mtime, reverse=True)
if not deb_candidates:
logger.error("apt download xvfb did not produce any .deb files under %s", dest_dir)
return None
return deb_candidates[0]
def _extract_xvfb_binary(deb_path: Path, target_dir: Path) -> Optional[Path]:
extract_dir = target_dir / "pkg"
if extract_dir.exists():
shutil.rmtree(extract_dir, ignore_errors=True)
try:
subprocess.run(
["dpkg-deb", "-x", str(deb_path), str(extract_dir)],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
except FileNotFoundError:
logger.error("'dpkg-deb' command not available; cannot extract Xvfb package.")
return None
except subprocess.CalledProcessError as exc:
stderr = exc.stderr.decode(errors="ignore") if isinstance(exc.stderr, bytes) else exc.stderr
logger.error("Failed to extract Xvfb package: %s", stderr or exc)
return None
xvfb_path = extract_dir / "usr/bin/Xvfb"
if xvfb_path.exists():
logger.info("Xvfb binary extracted to %s", xvfb_path)
try:
os.chmod(xvfb_path, 0o755)
except Exception:
pass
try:
deb_path.unlink()
except Exception:
pass
return xvfb_path
logger.error("Extracted Xvfb package but could not find usr/bin/Xvfb inside %s", extract_dir)
return None
def ensure_xvfb_binary() -> Optional[str]:
"""Ensure we have an Xvfb binary available for headless rendering."""
global _XVFB_BINARY
if _XVFB_BINARY and os.path.exists(_XVFB_BINARY):
return _XVFB_BINARY
env_path = os.environ.get(XVFB_ENV_VAR)
if env_path and os.path.exists(env_path):
_XVFB_BINARY = env_path
return _XVFB_BINARY
which = shutil.which("Xvfb")
if which:
_XVFB_BINARY = which
return _XVFB_BINARY
XVFB_STORAGE_DIR.mkdir(parents=True, exist_ok=True)
extracted_bin = XVFB_STORAGE_DIR / "pkg" / "usr" / "bin" / "Xvfb"
if extracted_bin.exists():
_XVFB_BINARY = str(extracted_bin)
return _XVFB_BINARY
deb_path = _download_xvfb_package(XVFB_STORAGE_DIR)
if not deb_path:
return None
extracted = _extract_xvfb_binary(deb_path, XVFB_STORAGE_DIR)
if extracted:
_XVFB_BINARY = str(extracted)
return _XVFB_BINARY
return None
def initialize_musescore_backend() -> bool:
"""Initialize MuseScore AppRun at startup to avoid on-demand downloads."""
global _MUSESCORE_READY
if _MUSESCORE_READY:
return True
available = []
primary = ensure_musescore_binary()
if primary:
available.append(primary)
logger.info("MuseScore 4 AppRun ready at startup: %s", primary)
legacy = ensure_musescore_v3_binary()
if legacy:
available.append(legacy)
logger.info("MuseScore 3 AppRun ready at startup: %s", legacy)
if available:
_MUSESCORE_READY = True
return True
logger.warning("No MuseScore AppRun binaries could be initialized; score visualization will fail.")
return False
def _coalesce_musescore_output(output_path: str) -> Optional[str]:
"""
Normalize MuseScore CLI output when it renders multiple PNG pages.
MuseScore writes `basename-1.png`, `basename-2.png`, ... even if we request
a single filename. We promote the first page to the requested output path
so downstream code can always load one predictable image.
"""
target = Path(output_path)
if target.exists():
return str(target)
suffix = target.suffix
pattern = f"{target.stem}-*{suffix}" if suffix else f"{target.name}-*"
matches = sorted(target.parent.glob(pattern))
if not matches:
return None
first_page = matches[0]
normalized_path: Optional[Path] = None
try:
shutil.move(str(first_page), str(target))
normalized_path = target
except Exception:
try:
shutil.copy(str(first_page), str(target))
normalized_path = target
except Exception:
normalized_path = first_page
if normalized_path == target:
logger.debug("Normalized MuseScore output %s -> %s", first_page, target)
else:
logger.debug("Using MuseScore page %s as output", first_page)
# Remove leftover pages to avoid clutter, keep best-effort
for extra in matches:
if extra == first_page:
continue
try:
extra.unlink()
except Exception:
pass
return str(normalized_path)
def persist_rendered_image(src_path: str) -> Optional[str]:
"""Copy rendered PNG to a persistent artifacts directory for UI display."""
if not src_path or not os.path.exists(src_path):
return None
try:
RENDER_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
dest = RENDER_OUTPUT_DIR / f"{int(time.time()*1000)}_{Path(src_path).name}"
shutil.copy2(src_path, dest)
return str(dest)
except Exception as exc:
logger.warning("Could not persist rendered image %s: %s", src_path, exc)
return src_path
@contextmanager
def xvfb_session():
"""Spin up a temporary Xvfb server if available."""
xvfb_bin = ensure_xvfb_binary()
if not xvfb_bin:
logger.warning("Xvfb binary unavailable; proceeding without virtual display.")
yield None
return
display = None
base_dir = Path("/tmp/.X11-unix")
try:
base_dir.mkdir(mode=0o1777, exist_ok=True)
except Exception:
pass
used = {p.name for p in base_dir.glob("X*")}
for candidate in range(99, 160):
name = f"X{candidate}"
if name not in used:
display = f":{candidate}"
break
if display is None:
logger.warning("No free DISPLAY slots for Xvfb.")
yield None
return
cmd = [
xvfb_bin,
display,
"-screen",
"0",
"1920x1080x24",
"-nolisten",
"tcp",
]
logger.debug("Starting Xvfb with command: %s", " ".join(cmd))
proc = subprocess.Popen(
cmd,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
)
time.sleep(0.5)
if proc.poll() is not None:
logger.error("Xvfb failed to start (exit %s).", proc.returncode)
yield None
return
try:
yield display
finally:
proc.terminate()
try:
proc.wait(timeout=5)
except subprocess.TimeoutExpired:
proc.kill()
def render_with_musescore(musicxml_path: Optional[str], output_path: str) -> Optional[str]:
"""Render using MuseScore command-line interface."""
if not musicxml_path or not os.path.exists(musicxml_path):
return None
candidates = []
legacy = ensure_musescore_v3_binary()
if legacy:
candidates.append(("MuseScore 3", legacy, True))
primary = ensure_musescore_binary()
if primary:
candidates.append(("MuseScore 4", primary, True))
if not candidates:
logger.warning("No MuseScore binaries available for rendering.")
return None
last_error = None
for label, musescore_bin, requires_display in candidates:
env = os.environ.copy()
env.setdefault("QTWEBENGINE_DISABLE_SANDBOX", "1")
env.setdefault("MUSESCORE_NO_AUDIO", "1")
cmd = [musescore_bin, "-o", output_path, musicxml_path]
logger.info("Attempting rendering with %s (%s).", label, musescore_bin)
try:
with xvfb_session() as display:
if display:
env["DISPLAY"] = display
env["QT_QPA_PLATFORM"] = "xcb"
logger.debug("%s: using Xvfb display %s", label, display)
else:
if requires_display:
logger.warning("%s requires an X11 display but Xvfb could not be started.", label)
continue
env["QT_QPA_PLATFORM"] = "offscreen"
logger.debug("%s: using Qt offscreen platform.", label)
with log_timing(f"{label} rendering"):
subprocess.run(
cmd,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env,
timeout=MUSESCORE_RENDER_TIMEOUT,
)
except subprocess.CalledProcessError as exc:
stderr = exc.stderr.decode(errors='ignore') if exc.stderr else str(exc)
logger.error("%s rendering failed: %s", label, stderr)
last_error = stderr
continue
except subprocess.TimeoutExpired:
logger.error("%s rendering timed out after %ss", label, MUSESCORE_RENDER_TIMEOUT)
last_error = f"{label} timed out"
continue
normalized_path = _coalesce_musescore_output(output_path)
if normalized_path and os.path.exists(normalized_path):
logger.info("%s rendered %s -> %s", label, musicxml_path, normalized_path)
return normalized_path
logger.error("%s rendered score but the expected output file was not found.", label)
last_error = "output missing"
logger.error("All MuseScore binaries failed to render the score. Last error: %s", last_error)
return None
def resolve_musicxml_path(musicxml_file) -> Optional[str]:
"""Return a filesystem path for the uploaded MusicXML file."""
if musicxml_file is None:
return None
if isinstance(musicxml_file, (str, os.PathLike)):
return str(musicxml_file)
if isinstance(musicxml_file, dict) and "name" in musicxml_file:
return musicxml_file["name"]
file_path = getattr(musicxml_file, "name", None)
if file_path:
return file_path
return None
def save_parsed_musicxml(score: pt.score.Score, original_path: Optional[str]) -> Optional[str]:
"""
Persist the parsed/normalized score to a temporary MusicXML file.
Returns the path to the saved file or None if saving fails.
"""
try:
suffix = ".musicxml"
if original_path:
original_suffix = Path(original_path).suffix.lower()
if original_suffix in {".xml", ".musicxml"}:
suffix = original_suffix
fd, tmp_path = tempfile.mkstemp(suffix=suffix)
os.close(fd)
with log_timing("Saving parsed MusicXML"):
pt.save_musicxml(score, tmp_path)
return tmp_path
except Exception as exc:
logger.warning("Could not save parsed MusicXML: %s", exc)
return None
def render_score_to_image(
score: pt.score.Score,
output_path: str,
source_musicxml_path: Optional[str] = None
) -> Optional[str]:
"""
Render score directly with the MuseScore AppRun (no other fallbacks).
The `score` argument is unused but kept for backward compatibility with the
earlier pipeline that rendered from a score object.
"""
del score # Render is driven solely by the MusicXML path
if not source_musicxml_path or not os.path.exists(source_musicxml_path):
logger.error("Cannot render score: MusicXML path '%s' not found.", source_musicxml_path)
return None
return render_with_musescore(source_musicxml_path, output_path)
def predict_analysis(
model: ContinualAnalysisGNN,
score: pt.score.Score,
tasks: list
) -> Dict[str, np.ndarray]:
"""
Perform music analysis prediction.
Parameters
----------
model : ContinualAnalysisGNN
The model to use for prediction
score : pt.score.Score
The score to analyze
tasks : list
List of analysis tasks to perform
Returns
-------
dict
Dictionary mapping task names to predictions and confidence scores
"""
with torch.no_grad():
with log_timing("Model prediction"):
predictions = model.predict(score)
# Decode predictions
decoded_predictions = {}
for task in tasks:
if task in predictions:
pred_tensor = predictions[task]
if len(pred_tensor.shape) > 1:
# Get confidence scores (probabilities)
pred_probs = torch.softmax(pred_tensor, dim=-1)
pred_onehot = torch.argmax(pred_tensor, dim=-1)
# Get confidence for the predicted class
confidence = torch.max(pred_probs, dim=-1)[0]
# Store confidence scores
decoded_predictions[f"{task}_confidence"] = confidence.cpu().numpy()
else:
pred_onehot = pred_tensor
# Decode using available representations
if task in available_representations:
try:
decoded = available_representations[task].decode(
pred_onehot.reshape(-1, 1)
)
# Convert to numpy array if it's a list
if isinstance(decoded, list):
decoded_predictions[task] = np.array(decoded).flatten()
else:
decoded_predictions[task] = decoded.flatten()
except (IndexError, ValueError) as e:
logger.warning("Error decoding %s predictions: %s", task, e)
# Fallback to raw indices
decoded_predictions[task] = pred_onehot.cpu().numpy()
else:
decoded_predictions[task] = pred_onehot.cpu().numpy()
# Add timing information
try:
if "onset" in predictions:
decoded_predictions["onset_beat"] = predictions["onset"].cpu().numpy()
else:
decoded_predictions["onset_beat"] = score.note_array()["onset_beat"]
except (AttributeError, KeyError, IndexError) as e:
logger.warning("Could not add onset timing: %s", e)
try:
if "s_measure" in predictions:
decoded_predictions["measure"] = predictions["s_measure"].cpu().numpy()
else:
decoded_predictions["measure"] = score[0].measure_number_map(score.note_array()["onset_div"])
except (AttributeError, KeyError, IndexError) as e:
logger.warning("Could not add measure information: %s", e)
return decoded_predictions
def process_musicxml(
musicxml_file,
selected_tasks: list
) -> Tuple[Optional[str], Optional[pd.DataFrame], Optional[str], str]:
"""
Process a MusicXML file and return visualization and analysis results.
Parameters
----------
musicxml_file : file
Uploaded MusicXML file
selected_tasks : list
List of selected analysis tasks
Returns
-------
tuple
(image_path, dataframe, parsed_musicxml_path, status_message)
"""
if musicxml_file is None:
return None, None, None, "Please upload a MusicXML file."
if not selected_tasks:
return None, None, None, "Please select at least one analysis task."
try:
score_path = resolve_musicxml_path(musicxml_file)
if score_path is None or not os.path.exists(score_path):
return None, None, None, "Could not locate the uploaded MusicXML file."
# Load the model
status_msg = "Loading model..."
logger.info(status_msg)
model = load_model()
# Load the score
status_msg = "Loading score..."
logger.info(status_msg)
score = pt.load_musicxml(score_path)
parsed_score_path = save_parsed_musicxml(score, score_path)
# Render score to image
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_img:
img_path = tmp_img.name
rendered_path: Optional[str] = None
predictions: Dict[str, np.ndarray] = {}
source_path = parsed_score_path or score_path
parallel_enabled = should_parallelize()
logger.info("Rendering score (parallel analysis enabled=%s)...", parallel_enabled)
if parallel_enabled:
logger.info("Running analysis and visualization in parallel (threads=%s).", 2)
render_success = False
analysis_success = False
with ThreadPoolExecutor(max_workers=2) as executor:
future_map = {
executor.submit(
render_score_to_image,
score,
img_path,
source_musicxml_path=source_path,
): "render",
executor.submit(
predict_analysis,
model,
score,
selected_tasks,
): "analysis",
}
for future in as_completed(future_map):
task_name = future_map[future]
try:
result = future.result()
except Exception:
logger.exception("%s task failed.", task_name.capitalize())
continue
if task_name == "render":
rendered_path = result
render_success = True
else:
predictions = result or {}
analysis_success = True
if not render_success:
logger.info("Retrying score rendering sequentially after parallel failure.")
rendered_path = render_score_to_image(
score,
img_path,
source_musicxml_path=source_path,
)
if not analysis_success:
logger.info("Retrying analysis sequentially after parallel failure.")
predictions = predict_analysis(model, score, selected_tasks)
else:
logger.info("Running analysis and visualization sequentially (parallel disabled).")
rendered_path = render_score_to_image(
score,
img_path,
source_musicxml_path=source_path,
)
predictions = predict_analysis(model, score, selected_tasks)
persisted_path = persist_rendered_image(rendered_path) if rendered_path else None
if rendered_path is None or persisted_path is None:
logger.warning("MuseScore AppRun could not render the score or save the PNG; visualization will be unavailable.")
# Create DataFrame
if predictions:
df = pd.DataFrame(predictions)
# Add note/event IDs
if 'note_id' not in df.columns:
df.insert(0, 'note_id', range(len(df)))
# Convert tpc_in_label logits into NCT-friendly labels
if 'tpc_in_label' in df.columns:
df['tpc_in_label'] = np.where(
df['tpc_in_label'].astype(int) == 0,
"NCT",
"Chord Tone"
)
# Reorder columns to have timing info first, then predictions, then confidence
timing_cols = [col for col in ['note_id', 'onset_beat', 'measure'] if col in df.columns]
confidence_cols = [col for col in df.columns if col.endswith('_confidence')]
prediction_cols = [col for col in df.columns if col not in timing_cols and col not in confidence_cols]
# Interleave predictions with their confidence scores
ordered_cols = timing_cols.copy()
for pred_col in prediction_cols:
ordered_cols.append(pred_col)
conf_col = f"{pred_col}_confidence"
if conf_col in confidence_cols:
ordered_cols.append(conf_col)
df = df[ordered_cols]
# Apply user-friendly column names
rename_map = {}
for key, label in DISPLAY_NAME_OVERRIDES.items():
if key in df.columns:
rename_map[key] = label
conf_key = f"{key}_confidence"
if conf_key in df.columns:
rename_map[conf_key] = f"{label} Confidence"
if rename_map:
df = df.rename(columns=rename_map)
status_msg = f"β Analysis complete! Analyzed {len(df)} notes with {len(selected_tasks)} task(s)."
if parsed_score_path:
status_msg += " Parsed MusicXML ready for download."
else:
df = pd.DataFrame()
status_msg = "β Analysis returned no predictions."
if parsed_score_path:
status_msg += " Parsed MusicXML ready for download."
return persisted_path, df, parsed_score_path, status_msg
except Exception as e:
error_msg = f"Error processing file: {str(e)}\n\n{traceback.format_exc()}"
logger.error(error_msg)
return None, None, None, error_msg
# Define available tasks
AVAILABLE_TASKS = {
"cadence": "Cadence Detection",
"localkey": "Local Key",
"tonkey": "Tonalized Key",
"quality": "Chord Quality",
"root": "Chord Root",
"bass": "Bass Note",
"inversion": "Chord Inversion",
"degree1": "Primary Degree",
"degree2": "Secondary Degree",
"romanNumeral": "Roman Numeral Analysis",
"phrase": "Phrase Segmentation",
"section": "Section Detection",
"hrhythm": "Harmonic Rhythm",
"pcset": "Pitch-Class Set",
"tpc_in_label": "Non-Chord Tone (NCT)",
"note_degree": "Note Degree",
}
DISPLAY_NAME_OVERRIDES = {
"tpc_in_label": "NCT",
"note_degree": "Note Degree",
}
# Ensure MuseScore AppRun is available before the UI is constructed
initialize_musescore_backend()
# Create Gradio interface
with gr.Blocks(title="AnalysisGNN Music Analysis", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π΅ AnalysisGNN Music Analysis
Upload a MusicXML score to perform automatic music analysis using Graph Neural Networks.
**Supported Analysis Tasks:**
- Cadence Detection
- Key Analysis (Local & Tonalized)
- Harmonic Analysis (Chords, Inversions, Roman Numerals)
- Phrase & Section Segmentation
- Non-Chord Tone Detection (TPC-in-label / NCT)
- Note Degree Labeling
**Model:** Pre-trained AnalysisGNN from [manoskary/analysisGNN](https://github.com/manoskary/analysisGNN)
""")
with gr.Row():
with gr.Column(scale=1):
# Input section
gr.Markdown("### π Input")
file_input = gr.File(
label="Upload MusicXML Score",
file_types=[".musicxml", ".xml", ".mxl"],
type="filepath"
)
task_selector = gr.CheckboxGroup(
choices=list(AVAILABLE_TASKS.values()),
value=["Cadence Detection", "Local Key", "Roman Numeral Analysis"],
label="Select Analysis Tasks",
info="Choose which tasks to perform"
)
analyze_btn = gr.Button("πΌ Analyze Score", variant="primary", size="lg")
gr.Markdown("---")
example_btn = gr.Button("π΅ Try Example (Mozart K.158)", size="sm")
with gr.Column(scale=2):
# Output section
gr.Markdown("### π Results")
status_output = gr.Textbox(
label="Status",
lines=2,
interactive=False
)
with gr.Row():
with gr.Column():
# Score visualization
gr.Markdown("### πΌ Score Visualization")
image_output = gr.Image(
label="Rendered Score",
type="filepath"
)
parsed_score_output = gr.File(
label="Parsed MusicXML (Download)",
interactive=False
)
with gr.Row():
with gr.Column():
# Analysis results table
gr.Markdown("### π Analysis Results")
table_output = gr.Dataframe(
label="Analysis Output",
wrap=True,
interactive=False
)
download_btn = gr.Button("πΎ Download Results as CSV")
csv_output = gr.File(label="Download CSV")
# Example section
gr.Markdown("""
### π‘ Tips & Information
**Getting Started:**
- Click "Try Example" to load a Mozart quartet, or upload your own MusicXML file
- Select the analysis tasks you're interested in
- Click "Analyze Score" to run the model
**Analysis Output:**
The table shows note-level predictions for all selected tasks:
- **Onset & Measure**: Timing information
- **Keys**: Detected key areas (local and tonalized)
- **Chords**: Harmonic analysis with Roman numerals
- **Cadences**: Identified cadence points and types
**Score Visualization:**
Requires MuseScore or LilyPond for rendering. If unavailable, analysis will still work.
""")
# Event handlers
def analyze_wrapper(file, tasks_selected):
# Convert task names back to internal names
task_mapping = {v: k for k, v in AVAILABLE_TASKS.items()}
selected_task_keys = [task_mapping[t] for t in tasks_selected if t in task_mapping]
return process_musicxml(file, selected_task_keys)
def load_example():
"""Load example Mozart score."""
import urllib.request
url = "https://raw.githubusercontent.com/manoskary/humdrum-mozart-quartets/refs/heads/master/musicxml/k158-01.musicxml"
# Create artifacts directory if it doesn't exist
os.makedirs("./artifacts", exist_ok=True)
example_path = "./artifacts/k158-01.musicxml"
if not os.path.exists(example_path):
try:
logger.info("Downloading example score from: %s", url)
urllib.request.urlretrieve(url, example_path)
logger.info("Example score saved to: %s", example_path)
except Exception as e:
return None, f"Error downloading example: {e}"
return example_path, "Example loaded! Click 'Analyze Score' to proceed."
analyze_btn.click(
fn=analyze_wrapper,
inputs=[file_input, task_selector],
outputs=[image_output, table_output, parsed_score_output, status_output]
)
example_btn.click(
fn=load_example,
outputs=[file_input, status_output]
)
def save_csv(df):
if df is None or len(df) == 0:
return None
with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as tmp:
df.to_csv(tmp.name, index=False)
return tmp.name
download_btn.click(
fn=save_csv,
inputs=[table_output],
outputs=[csv_output]
)
# Launch the app
if __name__ == "__main__":
# Pre-load the model at startup for efficiency
logger.info("=" * 50)
logger.info("Initializing AnalysisGNN app...")
logger.info("=" * 50)
logger.info("Pre-loading model at startup...")
load_model()
logger.info("Model ready. Launching Gradio interface...")
logger.info("=" * 50)
demo.launch()
|