Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,999 Bytes
614ed0b 504f83e 614ed0b d8a9127 0f15877 614ed0b 504f83e c250d8c 504f83e 614ed0b 504f83e 19e0f81 504f83e c250d8c 504f83e c250d8c 504f83e c250d8c 504f83e 7730438 504f83e 614ed0b 2267362 614ed0b 504f83e 686dabc 614ed0b 504f83e 614ed0b 504f83e 614ed0b 504f83e 614ed0b 504f83e 614ed0b d8a9127 614ed0b 504f83e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
"""
NotaGen Gradio Inference App for HuggingFace Spaces
This app provides a simple interface for generating symbolic music using NotaGen.
It accepts three parameters (period, composer, instrumentation) and returns ABC notation.
The ABC notation can then be processed by WeaveMuse locally for XML/PDF conversion.
IMPORTANT: Zero GPU Strategy
----------------------------
- Model initialization and weight downloading happen OUTSIDE @spaces.GPU decorated functions
- Only the actual inference happens inside the GPU-allocated function
- This ensures efficient GPU usage (only during inference, not during setup)
"""
import gradio as gr
import spaces
import torch
import logging
import traceback
import os
from smolagents import Tool
from typing import Optional
from weavemuse.models.notagen.inference import inference_patch, download_model_weights, model
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============================================================================
# INITIALIZATION PHASE (Outside GPU allocation)
# ============================================================================
# Download model weights and prepare everything BEFORE GPU functions are called
# This ensures GPU is only used for actual inference, not for setup
device = "cuda"
logger.info(f"Preparing NotaGen tool on device: {device}")
def load_model_weights(model_id=None):
"""Load model weights with intelligent quantization support."""
global model
# Fall back to original weights
try:
logger.info("Loading original full-precision model...")
original_path = download_model_weights(repo_id="ElectricAlexis/NotaGen")
checkpoint = torch.load(original_path, map_location=device, weights_only=False)
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
model.load_state_dict(state_dict)
model.eval()
logger.info("β
Original model loaded successfully!")
return True
except Exception as e:
logger.error(f"Failed to load model weights: {e}")
import traceback
logger.error(traceback.format_exc())
raise
class SimpleNotaGenTool(Tool):
"""
Simple tool for symbolic music generation using NotaGen model.
This tool can:
- Generate ABC notation from text prompts
- Create music in specific styles and periods
- Generate compositions for specified instrumentation
- Handle conditional generation with period-composer-instrumentation prompts
- Convert ABC to XML, PDF, MIDI, and MP3 formats
- Generate PDF images for visual display
Note: This is a simplified version without VRAM management.
"""
# Class attributes required by smolagents
name = "notagen"
description = (
"Generates symbolic music in ABC notation format with full conversion capabilities. "
"Can create compositions only accepts three parameters: musical period, composer, and instrumentation (Use Piano for better results). "
"composers, and instrumentation. Supports conditional generation with format: "
"'Period-Composer-Instrumentation' (e.g., 'Romantic-Chopin-Piano'). "
"Automatically converts to various formats including PDF for visual display."
)
inputs = {
"period": {
"type": "string",
"description": "Musical period (e.g., Baroque, Classical, Romantic)",
},
"composer": {
"type": "string",
"description": "Composer style to emulate (e.g., Bach, Mozart, Chopin)",
},
"instrumentation": {
"type": "string",
"description": "Instruments to use (e.g., Piano, Violin, Orchestra)",
}
}
output_type = "string"
def __init__(
self,
device: str = "auto",
model_id: str = "manoskary/NotaGenX-Quantized",
output_dir: Optional[str] = None,
**kwargs
):
"""
Initialize NotaGen tool.
Args:
device: Device to run on ("auto", "cuda", "cpu")
model_id: NotaGen model ID
output_dir: Directory for output files
**kwargs: Additional arguments
"""
# NotaGen is smaller model, estimate VRAM usage
estimated_vram = 2000.0
super().__init__()
self.output_dir = output_dir or "/tmp/notagen_output"
self.model_id = model_id
self.device = device
# Download model weights during initialization (outside GPU function)
self.download_model_weights(repo_id=model_id)
os.makedirs(self.output_dir, exist_ok=True)
logger.info(f"Simple NotaGen tool initialized")
def forward(self, period: str, composer: str, instrumentation: str) -> str:
"""
Generate symbolic music using NotaGen.
Args:
period: Musical period (e.g., Baroque, Classical, Romantic)
composer: Composer style to emulate (e.g., Bach, Mozart, Chopin)
instrumentation: Instruments to use (e.g., Piano, Violin, Orchestra)
Returns:
Path to generated ABC file or error message
"""
global model
global device
logger.info(f"Generating music: {period}-{composer}-{instrumentation}")
# Create prompt for NotaGen
prompt = f"{period}-{composer}-{instrumentation}"
model = model.to(device)
# Use the inference function
inference_fn = inference_patch
if inference_fn is None:
raise ImportError("inference_patch not available")
# Generate ABC notation (placeholder implementation)
abc_content = inference_fn(period, composer, instrumentation)
return abc_content
def download_model_weights(self, repo_id="manoskary/NotaGenX"):
"""
Download model weights from HuggingFace.
Args:
repo_id: Repository ID on HuggingFace
"""
load_model_weights(model_id=repo_id)
logger.info("β
NotaGen model weights downloaded successfully!")
# ============================================================================
# TOOL INITIALIZATION (Outside GPU allocation)
# ============================================================================
# Initialize the tool and download model weights BEFORE the GPU function is called
# This ensures:
# 1. Model weights are downloaded once at startup (not during every inference)
# 2. GPU is only allocated for actual inference, not for downloading/setup
# 3. Zero GPU is used efficiently (shorter GPU allocation times)
try:
notagen_tool = SimpleNotaGenTool(device=device, model_id="ElectricAlexis/NotaGen")
logger.info("β
NotaGen tool initialized successfully!")
except Exception as e:
logger.error(f"β Failed to initialize NotaGen tool: {e}")
logger.error(traceback.format_exc())
notagen_tool = None
# ============================================================================
# GPU-ALLOCATED INFERENCE FUNCTION
# ============================================================================
# This function is decorated with @spaces.GPU to request GPU only during execution
# Model is already loaded, so GPU time is minimal and efficient
@spaces.GPU(duration=120)
def generate_abc(period: str, composer: str, instrumentation: str) -> str:
"""
Generate ABC notation using NotaGen.
This function is decorated with @spaces.GPU to allocate GPU only during inference.
Model weights are already downloaded and prepared outside this function.
Args:
period: Musical period (e.g., Baroque, Classical, Romantic)
composer: Composer style (e.g., Bach, Mozart, Chopin)
instrumentation: Instruments (e.g., Piano, Violin, Orchestra)
Returns:
ABC notation string or error message
"""
if notagen_tool is None:
error_msg = "β NotaGen tool not initialized. Please check server logs."
logger.error(error_msg)
return error_msg
try:
logger.info(f"Generating ABC for: {period}-{composer}-{instrumentation}")
# Call the NotaGen tool's forward method
# Model is already loaded, this just does the inference
result = notagen_tool.forward(
period=period,
composer=composer,
instrumentation=instrumentation
)
logger.info(f"β
Successfully generated ABC notation ({len(result)} chars)")
return result
except Exception as e:
error_msg = f"β Error during generation: {str(e)}\n\n{traceback.format_exc()}"
logger.error(error_msg)
return error_msg
# Create Gradio interface
with gr.Blocks(title="NotaGen - Symbolic Music Generation") as demo:
gr.Markdown("""
# π΅ NotaGen - Symbolic Music Generation
Generate symbolic music in ABC notation format using NotaGen.
This space returns only the **ABC notation** as text. For conversion to PDF, XML, or MIDI,
use the WeaveMuse package locally or through its API.
### Usage
1. Select a musical **period** (e.g., Baroque, Classical, Romantic)
2. Choose a **composer** style (e.g., Bach, Mozart, Chopin)
3. Specify **instrumentation** (Piano recommended for best results)
4. Click **Generate** to receive ABC notation
The generated ABC can be processed by WeaveMuse for full music score rendering.
""")
with gr.Row():
with gr.Column():
period_input = gr.Textbox(
label="Musical Period",
placeholder="e.g., Classical, Romantic, Baroque",
value="Classical"
)
composer_input = gr.Textbox(
label="Composer Style",
placeholder="e.g., Mozart, Chopin, Bach",
value="Mozart"
)
instrumentation_input = gr.Textbox(
label="Instrumentation",
placeholder="e.g., Piano, Violin, Orchestra",
value="Piano"
)
generate_btn = gr.Button("πΌ Generate ABC Notation", variant="primary")
with gr.Column():
output_text = gr.Textbox(
label="Generated ABC Notation",
placeholder="ABC notation will appear here...",
lines=20,
max_lines=30
)
gr.Examples(
examples=[
["Classical", "Mozart", "Piano"],
["Romantic", "Chopin", "Piano"],
["Baroque", "Bach", "Piano"],
["Classical", "Beethoven", "Piano"],
["Romantic", "Liszt", "Piano"],
],
inputs=[period_input, composer_input, instrumentation_input],
label="Example Prompts"
)
# Connect the button to the function
generate_btn.click(
fn=generate_abc,
inputs=[period_input, composer_input, instrumentation_input],
outputs=output_text,
api_name="infer" # Important: This creates the /infer endpoint
)
gr.Markdown("""
---
### About
**NotaGen** is a symbolic music generation model that creates music in ABC notation format.
- **ABC Notation**: A text-based music notation format that can be converted to PDF, MIDI, XML, etc.
- **Model**: Uses the quantized NotaGen model for efficient inference
- **Integration**: Designed to work seamlessly with WeaveMuse for full music generation pipelines
**Note**: This space only generates ABC notation. For complete score rendering (PDF, MP3, etc.),
use WeaveMuse locally or via its remote tools.
""")
# Launch the app
if __name__ == "__main__":
demo.launch()
|