Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| import math | |
| from diffusers import FlowMatchEulerDiscreteScheduler, QwenImageEditPlusPipeline | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from briarmbg import BriaRMBG | |
| import os | |
| import tempfile | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| scheduler=scheduler, | |
| torch_dtype=dtype | |
| ).to(device) | |
| pipe.load_lora_weights( | |
| "lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors", adapter_name="fast" | |
| ) | |
| pipe.load_lora_weights( | |
| "dx8152/Qwen-Image-Edit-2509-Fusion", | |
| weight_name="溶图.safetensors", adapter_name="fusion" | |
| ) | |
| pipe.set_adapters(["fast"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["fast"]) | |
| pipe.fuse_lora(adapter_names=["fusion"]) | |
| pipe.unload_lora_weights() | |
| # ✅ Load background remover | |
| rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4").to(device, dtype=torch.float32) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # --- Background Removal Helpers --- | |
| def remove_alpha_channel(image: Image.Image) -> Image.Image: | |
| """ | |
| Remove alpha channel from PIL Image if it exists. | |
| Args: | |
| image (Image.Image): Input PIL image | |
| Returns: | |
| Image.Image: Image with alpha channel removed (RGB format) | |
| """ | |
| if image.mode in ('RGBA', 'LA'): | |
| # Create a white background | |
| background = Image.new('RGB', image.size, (255, 255, 255)) | |
| # Paste the image onto the white background using alpha channel as mask | |
| if image.mode == 'RGBA': | |
| background.paste(image, mask=image.split()[-1]) # Use alpha channel as mask | |
| else: # LA mode | |
| background.paste(image.convert('RGB'), mask=image.split()[-1]) | |
| return background | |
| elif image.mode == 'P': | |
| # Convert palette mode to RGB (some palette images have transparency) | |
| if 'transparency' in image.info: | |
| image = image.convert('RGBA') | |
| background = Image.new('RGB', image.size, (255, 255, 255)) | |
| background.paste(image, mask=image.split()[-1]) | |
| return background | |
| else: | |
| return image.convert('RGB') | |
| elif image.mode != 'RGB': | |
| # Convert any other mode to RGB | |
| return image.convert('RGB') | |
| else: | |
| # Already RGB, return as is | |
| return image | |
| # @torch.inference_mode() | |
| def numpy2pytorch(imgs): | |
| h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0 | |
| h = h.movedim(-1, 1) | |
| return h | |
| # @torch.inference_mode() | |
| def pytorch2numpy(imgs, quant=True): | |
| results = [] | |
| for x in imgs: | |
| y = x.movedim(0, -1) | |
| if quant: | |
| y = y * 127.5 + 127.5 | |
| y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
| else: | |
| y = y * 0.5 + 0.5 | |
| y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) | |
| results.append(y) | |
| return results | |
| def resize_without_crop(image, target_width, target_height): | |
| pil_image = Image.fromarray(image) | |
| resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
| return np.array(resized_image) | |
| def run_rmbg(img, sigma=0.0): | |
| """ | |
| Remove background from image using BriaRMBG model. | |
| Args: | |
| img (np.ndarray): Input image as numpy array (H, W, C) | |
| sigma (float): Noise parameter for blending | |
| Returns: | |
| tuple: (result_image, alpha_mask) where result_image is the image with background removed | |
| """ | |
| H, W, C = img.shape | |
| assert C == 3 | |
| k = (256.0 / float(H * W)) ** 0.5 | |
| feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) | |
| feed = numpy2pytorch([feed]).to(device="cuda", dtype=torch.float32) | |
| alpha = rmbg(feed)[0][0] | |
| alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") | |
| alpha = alpha.movedim(1, -1)[0] | |
| alpha = alpha.detach().float().cpu().numpy().clip(0, 1) | |
| result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha | |
| return result.clip(0, 255).astype(np.uint8), alpha | |
| def remove_background_from_image(image: Image.Image) -> Image.Image: | |
| """ | |
| Remove background from PIL Image using RMBG model. | |
| Args: | |
| image (Image.Image): Input PIL image | |
| Returns: | |
| Image.Image: Image with background removed (transparent background) | |
| """ | |
| # Convert PIL to numpy array | |
| img_array = np.array(image) | |
| # Remove background using RMBG | |
| result_array, alpha_mask = run_rmbg(img_array) | |
| # Convert back to PIL with alpha channel | |
| result_image = Image.fromarray(result_array) | |
| # Create RGBA image with alpha mask | |
| if result_image.mode != 'RGBA': | |
| result_image = result_image.convert('RGBA') | |
| # Handle alpha mask dimensions and convert to PIL | |
| # The alpha_mask might have extra dimensions, so squeeze and ensure 2D | |
| alpha_mask_2d = np.squeeze(alpha_mask) | |
| if alpha_mask_2d.ndim > 2: | |
| # If still more than 2D, take the first channel | |
| alpha_mask_2d = alpha_mask_2d[:, :, 0] if alpha_mask_2d.shape[-1] == 1 else alpha_mask_2d[:, :, 0] | |
| # Convert to uint8 and create PIL Image without deprecated mode parameter | |
| alpha_array = (alpha_mask_2d * 255).astype(np.uint8) | |
| alpha_pil = Image.fromarray(alpha_array, 'L') | |
| result_image.putalpha(alpha_pil) | |
| return result_image | |
| def calculate_dimensions(image): | |
| """Calculate output dimensions based on background image, keeping largest side at 1024.""" | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| # --- Inference --- | |
| def infer( | |
| product_image, | |
| image_background, | |
| prompt="", | |
| seed=42, | |
| randomize_seed=True, | |
| true_guidance_scale=1, | |
| num_inference_steps=4, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| processed_subjects = [] | |
| if product_image: | |
| image = remove_background_from_image(product_image) | |
| # Always remove alpha channels to ensure RGB format | |
| image = remove_alpha_channel(image) | |
| processed_subjects.append(image) | |
| all_inputs = processed_subjects | |
| if image_background is not None: | |
| all_inputs.append(image_background) | |
| width, height = calculate_dimensions(image_background) | |
| if not all_inputs: | |
| raise gr.Error("Please upload at least one image or a background image.") | |
| prompt = prompt +". Integrate the product from Image 1 onto Image 2 as the background, ensuring seamless blending with appropriate lighting and shadows" if len(all_inputs) > 1 else prompt | |
| result = pipe( | |
| image=all_inputs, | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return [image_background, result], seed | |
| # --- UI --- | |
| css = '''#col-container { max-width: 1100px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 1100px; margin: 0 auto; }''' | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## Qwen Image Edit — Product Fusion") | |
| gr.Markdown(""" Seamlessy blend products onto backgrounds with Qwen Image Edit 2509 ✨ Using [dx8152's Qwen-Image-Edit-2509 Fusion LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Fusion) and [lightx2v Qwen-Image-Lightning LoRA]() for 4-step inference 💨 """ ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| product_image = gr.Image( | |
| label="Product image (background auto removed)", type="pil" | |
| ) | |
| image_background = gr.Image(label="Background Image", type="pil", visible=True) | |
| prompt = gr.Textbox(label="Prompt", placeholder="put the [product] on the [background]") | |
| run_button = gr.Button("Fuse Images", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) | |
| with gr.Column(): | |
| result = gr.ImageSlider(label="Output Image", interactive=False) | |
| gr.Examples( | |
| examples=[ | |
| ["product.png", "wednesday.png", "put the product in her hand"], | |
| [None, "fusion_car.png", ""], | |
| ["product_2.png", "background_2.png", "put the product on the chair"], | |
| [None, "fusion_milkshake.png", ""], | |
| [None, "fusion_shoes.png", "put the shoes on the feet"], | |
| ["product_3.png", "background_3.jpg", "put the product on the background"], | |
| ], | |
| inputs=[product_image, image_background, prompt], | |
| outputs=[result, seed], | |
| fn=infer, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| inputs = [product_image, image_background, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps] | |
| outputs = [result, seed] | |
| run_button.click(fn=infer, inputs=inputs, outputs=outputs) | |
| demo.launch(share=True) | |