Spaces:
Runtime error
Runtime error
| # Import required libraries for image processing, deep learning, and visualization | |
| import cv2 # OpenCV for image processing | |
| import torch # PyTorch deep learning framework | |
| import numpy as np # NumPy for numerical operations | |
| from transformers import DPTImageProcessor # Hugging Face image processor for depth estimation | |
| import gradio as gr # Gradio for creating web interfaces | |
| import matplotlib.pyplot as plt # Matplotlib for plotting | |
| from mpl_toolkits.mplot3d import Axes3D # 3D plotting tools | |
| import torch.nn as nn # Neural network modules from PyTorch | |
| # Set up device - will use GPU if available, otherwise CPU | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Define my compressed student model architecture for depth estimation | |
| class CompressedStudentModel(nn.Module): | |
| def __init__(self): | |
| # Initialize parent class | |
| super(CompressedStudentModel, self).__init__() | |
| # Define encoder network that extracts features from input image | |
| self.encoder = nn.Sequential( | |
| nn.Conv2d(3, 64, kernel_size=3, padding=1), # First conv layer: RGB -> 64 channels | |
| nn.ReLU(), # Activation function | |
| nn.Conv2d(64, 64, kernel_size=3, padding=1), # Second conv: 64 -> 64 channels | |
| nn.ReLU(), | |
| nn.MaxPool2d(2), # Reduce spatial dimensions by 2 | |
| nn.Conv2d(64, 128, kernel_size=3, padding=1), # Third conv: 64 -> 128 channels | |
| nn.ReLU(), | |
| nn.Conv2d(128, 128, kernel_size=3, padding=1), # Fourth conv: 128 -> 128 channels | |
| nn.ReLU(), | |
| nn.MaxPool2d(2), # Further reduce spatial dimensions | |
| nn.Conv2d(128, 256, kernel_size=3, padding=1), # Fifth conv: 128 -> 256 channels | |
| nn.ReLU(), | |
| nn.Conv2d(256, 256, kernel_size=3, padding=1), # Sixth conv: 256 -> 256 channels | |
| nn.ReLU(), | |
| ) | |
| # Define decoder network that upsamples features back to original resolution | |
| self.decoder = nn.Sequential( | |
| nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1), # First upsample: 256 -> 128 | |
| nn.ReLU(), | |
| nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), # Second upsample: 128 -> 64 | |
| nn.ReLU(), | |
| nn.Conv2d(64, 1, kernel_size=3, padding=1), # Final conv: 64 -> 1 channel depth map | |
| ) | |
| def forward(self, x): | |
| # Pass input through encoder to get features | |
| features = self.encoder(x) | |
| # Pass features through decoder to get depth map | |
| depth = self.decoder(features) | |
| return depth | |
| # Load my trained model and prepare it for inference | |
| model = CompressedStudentModel().to(device) # Create model instance and move to device | |
| model.load_state_dict(torch.load("huntrezz_depth_v2.pt", map_location=device)) # Load trained weights | |
| model.eval() # Set model to evaluation mode | |
| # Initialize the image processor from Hugging Face | |
| processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
| def preprocess_image(image): | |
| # Resize image to 200x200 for consistent processing | |
| image = cv2.resize(image, (200, 200)) | |
| # Convert image to PyTorch tensor and move to device | |
| image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) | |
| # Normalize pixel values to [0,1] range | |
| return image / 255.0 | |
| def plot_depth_map(depth_map, original_image): | |
| # Create new figure with specific size | |
| fig = plt.figure(figsize=(16, 9)) | |
| # Add 3D subplot | |
| ax = fig.add_subplot(111, projection='3d') | |
| # Create coordinate grids for 3D plot | |
| x, y = np.meshgrid(range(depth_map.shape[1]), range(depth_map.shape[0])) | |
| # Normalize depth values for coloring | |
| norm = plt.Normalize(depth_map.min(), depth_map.max()) | |
| colors = plt.cm.viridis(norm(depth_map)) | |
| # Create 3D surface plot | |
| ax.plot_surface(x, y, depth_map, facecolors=colors, shade=False) | |
| ax.set_zlim(0, 1) # Set z-axis limits | |
| # Set viewing angle for better visualization | |
| ax.view_init(elev=70, azim=90) | |
| plt.axis('off') # Hide axes | |
| plt.close(fig) # Close the figure to free memory | |
| # Convert matplotlib figure to numpy array | |
| fig.canvas.draw() | |
| img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
| img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| return img | |
| # Disable gradient computation for inference | |
| def process_frame(image): | |
| # Check if image is valid | |
| if image is None: | |
| return None | |
| # Preprocess input image | |
| preprocessed = preprocess_image(image) | |
| # Get depth prediction from model | |
| predicted_depth = model(preprocessed).squeeze().cpu().numpy() | |
| # Normalize depth values to [0,1] range | |
| depth_map = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min()) | |
| # Convert BGR to RGB if needed | |
| if image.shape[2] == 3: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Create and return 3D visualization | |
| return plot_depth_map(depth_map, image) | |
| # Create Gradio interface for webcam input | |
| interface = gr.Interface( | |
| fn=process_frame, # Processing function | |
| inputs=gr.Image(sources="webcam", streaming=True), # Webcam input | |
| outputs="image", # Image output | |
| live=True # Enable live updates | |
| ) | |
| # Launch the interface | |
| interface.launch() |