Spaces:
Runtime error
Runtime error
| # Copyright 2025 OpenAccess AI Collective and the LlamaFactory team. | |
| # | |
| # This code is inspired by the OpenAccess AI Collective's axolotl library. | |
| # https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import TYPE_CHECKING, Any, Literal, Optional | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import DataCollatorForSeq2Seq | |
| from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER | |
| from ..extras.packages import is_pillow_available | |
| if is_pillow_available(): | |
| from PIL import Image | |
| if TYPE_CHECKING: | |
| from transformers import ProcessorMixin | |
| from .template import Template | |
| def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor": | |
| r"""Expand 2d attention mask to 4d attention mask. | |
| Expand the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len), | |
| handle packed sequences and transforms the mask to lower triangular form to prevent future peeking. | |
| e.g. | |
| ```python | |
| # input | |
| [[1, 1, 2, 2, 2, 0]] | |
| # output | |
| [ | |
| [ | |
| [ | |
| [o, x, x, x, x, x], | |
| [o, o, x, x, x, x], | |
| [x, x, o, x, x, x], | |
| [x, x, o, o, x, x], | |
| [x, x, o, o, o, x], | |
| [x, x, x, x, x, x], | |
| ] | |
| ] | |
| ] | |
| ``` | |
| where `o` equals to `0.0`, `x` equals to `min_dtype`. | |
| """ | |
| _, seq_len = attention_mask_with_indices.size() | |
| min_dtype = torch.finfo(dtype).min | |
| zero_tensor = torch.tensor(0, dtype=dtype) | |
| # Create a non-padding mask. | |
| non_padding_mask = (attention_mask_with_indices != 0).unsqueeze(1).unsqueeze(2) | |
| # Create indices for comparison. | |
| indices = attention_mask_with_indices.unsqueeze(1).unsqueeze(2) # [bsz, 1, 1, seq_len] | |
| indices_t = attention_mask_with_indices.unsqueeze(1).unsqueeze(3) # [bsz, 1, seq_len, 1] | |
| # Create a lower triangular mask. | |
| tril_mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool)) | |
| attention_mask_4d = (indices == indices_t) & non_padding_mask & tril_mask | |
| # Invert the attention mask. | |
| attention_mask_4d = torch.where(attention_mask_4d, zero_tensor, min_dtype) | |
| return attention_mask_4d | |
| class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq): | |
| r"""Data collator that supports VLMs. | |
| Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios. | |
| """ | |
| template: Optional["Template"] = None | |
| processor: Optional["ProcessorMixin"] = None | |
| def __post_init__(self): | |
| if self.template is None: | |
| raise ValueError("Template is required for MultiModalDataCollator.") | |
| def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]: | |
| batch_images, batch_videos, batch_audios = [], [], [] | |
| batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], [] | |
| for feature in features: | |
| images = feature.pop("images", None) or [] | |
| videos = feature.pop("videos", None) or [] | |
| audios = feature.pop("audios", None) or [] | |
| batch_images.extend(images) | |
| batch_videos.extend(videos) | |
| batch_audios.extend(audios) | |
| batch_imglens.append(len(images)) | |
| batch_vidlens.append(len(videos)) | |
| batch_audlens.append(len(audios)) | |
| batch_input_ids.append(feature["input_ids"]) | |
| fake_input_ids = [] | |
| if ( | |
| self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0 | |
| ): # avoid process hanging in zero3/fsdp case | |
| fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}] | |
| fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))] | |
| fake_messages = self.template.mm_plugin.process_messages( | |
| fake_messages, fake_images, [], [], self.processor | |
| ) | |
| _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False) | |
| _fake_input_ids, _ = self.template.mm_plugin.process_token_ids( | |
| _fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor | |
| ) | |
| fake_input_ids.extend(_fake_input_ids) | |
| batch_images = fake_images | |
| batch_imglens[0] = 1 | |
| if ( | |
| self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0 | |
| ): # avoid process hanging in zero3/fsdp case | |
| fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}] | |
| fake_audios = [np.zeros(1600)] | |
| fake_messages = self.template.mm_plugin.process_messages( | |
| fake_messages, [], [], fake_audios, self.processor | |
| ) | |
| _fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False) | |
| _fake_input_ids, _ = self.template.mm_plugin.process_token_ids( | |
| _fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor | |
| ) | |
| fake_input_ids.extend(_fake_input_ids) | |
| batch_audios = fake_audios | |
| batch_audlens[0] = 1 | |
| if len(fake_input_ids) != 0: | |
| if self.tokenizer.padding_side == "right": | |
| features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids | |
| features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids) | |
| features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids) | |
| else: | |
| features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"] | |
| features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"] | |
| features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"] | |
| batch_input_ids[0] = features[0]["input_ids"] | |
| mm_inputs = self.template.mm_plugin.get_mm_inputs( | |
| batch_images, | |
| batch_videos, | |
| batch_audios, | |
| batch_imglens, | |
| batch_vidlens, | |
| batch_audlens, | |
| batch_input_ids, | |
| self.processor, | |
| ) | |
| if "token_type_ids" in mm_inputs: | |
| token_type_ids = mm_inputs.pop("token_type_ids") | |
| for i, feature in enumerate(features): | |
| feature["token_type_ids"] = token_type_ids[i] | |
| features: dict[str, torch.Tensor] = super().__call__(features) | |
| if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope | |
| rope_index_kwargs = { | |
| "input_ids": features["input_ids"], | |
| "image_grid_thw": mm_inputs.get("image_grid_thw"), | |
| "video_grid_thw": mm_inputs.get("video_grid_thw"), | |
| "attention_mask": (features["attention_mask"] >= 1).float(), | |
| } | |
| if "second_per_grid_ts" in mm_inputs: # for qwen2vl | |
| rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts") | |
| if "video_second_per_grid" in mm_inputs: # for qwen2omni | |
| rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid") | |
| if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker": # for qwen2omni | |
| rope_index_kwargs["use_audio_in_video"] = getattr(self.processor, "use_audio_in_video", False) | |
| feature_attention_mask = mm_inputs.get("feature_attention_mask", None) | |
| if feature_attention_mask is not None: | |
| audio_feature_lengths = torch.sum( | |
| feature_attention_mask, dim=1 | |
| ) # FIXME need to get video image lengths | |
| rope_index_kwargs["audio_seqlens"] = audio_feature_lengths # prepare for input | |
| delta0 = (1 - rope_index_kwargs["attention_mask"]).sum(dim=-1).unsqueeze(1) | |
| # avoid conflict | |
| new_position_ids, rope_deltas = self.model.get_rope_index(**rope_index_kwargs) | |
| features["position_ids"], features["rope_deltas"] = ( | |
| new_position_ids.clone(), | |
| rope_deltas - delta0, | |
| ) # avoid inplace operation FIXME | |
| else: # for qwen2vl | |
| features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs) | |
| if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled | |
| cross_attention_mask = mm_inputs.pop("cross_attention_mask") | |
| seq_len = features["input_ids"].size(1) | |
| orig_len = cross_attention_mask.size(1) | |
| mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len)) | |
| features.update(mm_inputs) | |
| if "image_bound" in features: # for minicpmv inputs | |
| bsz, seq_length = features["input_ids"].shape | |
| features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1) | |
| return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]} | |
| return features | |
| class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq): | |
| r"""Data collator for 4d attention mask.""" | |
| block_diag_attn: bool = False | |
| attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager" | |
| compute_dtype: "torch.dtype" = torch.float32 | |
| def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]: | |
| features = super().__call__(features) | |
| if self.block_diag_attn and self.attn_implementation != "flash_attention_2": | |
| features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype) | |
| for key, value in features.items(): # cast data dtype for paligemma | |
| if torch.is_tensor(value) and torch.is_floating_point(value): | |
| features[key] = value.to(self.compute_dtype) | |
| return features | |
| class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): | |
| r"""Data collator for pairwise data.""" | |
| def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]: | |
| r"""Pad batched data to the longest sequence in the batch. | |
| We generate 2 * n examples where the first n examples represent chosen examples and | |
| the last n examples represent rejected examples. | |
| """ | |
| concatenated_features = [] | |
| for key in ("chosen", "rejected"): | |
| for feature in features: | |
| target_feature = { | |
| "input_ids": feature[f"{key}_input_ids"], | |
| "attention_mask": feature[f"{key}_attention_mask"], | |
| "labels": feature[f"{key}_labels"], | |
| "images": feature["images"], | |
| "videos": feature["videos"], | |
| "audios": feature["audios"], | |
| } | |
| concatenated_features.append(target_feature) | |
| return super().__call__(concatenated_features) | |
| class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): | |
| r"""Data collator for KTO data.""" | |
| def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]: | |
| target_features = [] | |
| kl_features = [] | |
| kto_tags = [] | |
| for feature in features: | |
| target_feature = { | |
| "input_ids": feature["input_ids"], | |
| "attention_mask": feature["attention_mask"], | |
| "labels": feature["labels"], | |
| "images": feature["images"], | |
| "videos": feature["videos"], | |
| "audios": feature["audios"], | |
| } | |
| kl_feature = { | |
| "input_ids": feature["kl_input_ids"], | |
| "attention_mask": feature["kl_attention_mask"], | |
| "labels": feature["kl_labels"], | |
| "images": feature["images"], | |
| "videos": feature["videos"], | |
| "audios": feature["audios"], | |
| } | |
| target_features.append(target_feature) | |
| kl_features.append(kl_feature) | |
| kto_tags.append(feature["kto_tags"]) | |
| batch = super().__call__(target_features) | |
| kl_batch = super().__call__(kl_features) | |
| batch["kl_input_ids"] = kl_batch["input_ids"] | |
| batch["kl_attention_mask"] = kl_batch["attention_mask"] | |
| batch["kl_labels"] = kl_batch["labels"] | |
| if "cross_attention_mask" in kl_batch: # for mllama inputs | |
| batch["kl_cross_attention_mask"] = kl_batch["cross_attention_mask"] | |
| if "token_type_ids" in kl_batch: | |
| batch["kl_token_type_ids"] = kl_batch["token_type_ids"] | |
| batch["kto_tags"] = torch.tensor(kto_tags) | |
| return batch | |