Spaces:
Runtime error
Runtime error
Eugene Siow
commited on
Commit
·
a211e78
1
Parent(s):
06e8cb7
Initial commit.
Browse files- .gitignore +7 -0
- README.md +2 -2
- app.py +78 -0
- packages.txt +4 -0
- requirements.txt +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.idea/
|
| 2 |
+
venv/
|
| 3 |
+
tmp/
|
| 4 |
+
*.bmp
|
| 5 |
+
*.jpg
|
| 6 |
+
*.png
|
| 7 |
+
*.db
|
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Remove Bg
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
|
|
|
| 1 |
---
|
| 2 |
title: Remove Bg
|
| 3 |
+
emoji: 🖼️
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
|
| 7 |
+
title = "Remove Bg"
|
| 8 |
+
description = "Automatically remove the image background from a profile photo."
|
| 9 |
+
article = "<p style='text-align: center'><a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a>"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def make_transparent_foreground(pic, mask):
|
| 13 |
+
# split the image into channels
|
| 14 |
+
b, g, r = cv2.split(np.array(pic).astype('uint8'))
|
| 15 |
+
# add an alpha channel with and fill all with transparent pixels (max 255)
|
| 16 |
+
a = np.ones(mask.shape, dtype='uint8') * 255
|
| 17 |
+
# merge the alpha channel back
|
| 18 |
+
alpha_im = cv2.merge([b, g, r, a], 4)
|
| 19 |
+
# create a transparent background
|
| 20 |
+
bg = np.zeros(alpha_im.shape)
|
| 21 |
+
# setup the new mask
|
| 22 |
+
new_mask = np.stack([mask, mask, mask, mask], axis=2)
|
| 23 |
+
# copy only the foreground color pixels from the original image where mask is set
|
| 24 |
+
foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8)
|
| 25 |
+
|
| 26 |
+
return foreground
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def remove_background(input_image):
|
| 30 |
+
preprocess = transforms.Compose([
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 33 |
+
])
|
| 34 |
+
|
| 35 |
+
input_tensor = preprocess(input_image)
|
| 36 |
+
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
| 37 |
+
|
| 38 |
+
# move the input and model to GPU for speed if available
|
| 39 |
+
if torch.cuda.is_available():
|
| 40 |
+
input_batch = input_batch.to('cuda')
|
| 41 |
+
model.to('cuda')
|
| 42 |
+
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
output = model(input_batch)['out'][0]
|
| 45 |
+
output_predictions = output.argmax(0)
|
| 46 |
+
|
| 47 |
+
# create a binary (black and white) mask of the profile foreground
|
| 48 |
+
mask = output_predictions.byte().cpu().numpy()
|
| 49 |
+
background = np.zeros(mask.shape)
|
| 50 |
+
bin_mask = np.where(mask, 255, background).astype(np.uint8)
|
| 51 |
+
|
| 52 |
+
foreground = make_transparent_foreground(input_image, bin_mask)
|
| 53 |
+
|
| 54 |
+
return foreground, bin_mask
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def inference(img):
|
| 58 |
+
foreground, _ = remove_background(img)
|
| 59 |
+
return foreground
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
torch.hub.download_url_to_file('https://pbs.twimg.com/profile_images/691700243809718272/z7XZUARB_400x400.jpg',
|
| 63 |
+
'demis.jpg')
|
| 64 |
+
torch.hub.download_url_to_file('https://hai.stanford.edu/sites/default/files/styles/person_medium/public/2020-03/hai_1512feifei.png?itok=INFuLABp',
|
| 65 |
+
'lifeifei.png')
|
| 66 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True)
|
| 67 |
+
model.eval()
|
| 68 |
+
|
| 69 |
+
gr.Interface(
|
| 70 |
+
inference,
|
| 71 |
+
gr.inputs.Image(type="pil", label="Input"),
|
| 72 |
+
gr.outputs.Image(type="pil", label="Output"),
|
| 73 |
+
title=title,
|
| 74 |
+
description=description,
|
| 75 |
+
article=article,
|
| 76 |
+
examples=[['demis.jpg'], ['lifeifei.png']],
|
| 77 |
+
enable_queue=True
|
| 78 |
+
).launch(debug=False)
|
packages.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python3-opencv
|
| 2 |
+
ffmpeg
|
| 3 |
+
libsm6
|
| 4 |
+
libxext6
|
requirements.txt
ADDED
|
Binary file (48 Bytes). View file
|
|
|