Spaces:
Sleeping
Sleeping
File size: 10,321 Bytes
47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f b029cce 47e116f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
## **Setting Up the Development Environment**
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
import gradio as gr
import torch
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
"""## **Building a Baseline Chatbot**"""
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the pretrained DialoGPT model and tokenizer
MODEL_NAME= "microsoft/DialoGPT-medium"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Baseline chatbot function
chat_history_ids = None
def chatbot_response(user_input, chat_history_ids=None):
new_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
# Add conversational history
# torch.cat() concatenates tensors along the last dimension (dim=-1).
# If this is the FIRST message (chat_history_ids is None), we just use new_input_ids.
bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) if chat_history_ids is not None else new_input_ids
# Generate a response
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# bot_input_ids.shape[-1] → length of the input tokens
# chat_history_ids[:, bot_input_ids.shape[-1]:] → slice off the input, keep only newly generated tokens
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
"""
## **Launch Your First Chatbot Locally**"""
css = """
/* Container */
.container {
background-color: #fdf4f4;
border-radius: 15px;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
padding: 25px;
font-family: 'Comic Sans MS', sans-serif;
}
/* Title */
h1 {
text-align: center;
font-size: 32px;
color: #ff7f7f;
font-weight: 600;
margin-bottom: 25px;
font-family: 'Pacifico', sans-serif;
}
/* Outer box */
.input_output_outerbox {
background-color: #f8d3d3; /* Light pink */
padding: 10px;
border-radius: 15px;
margin-bottom: 15px;
}
/* Input and Text area */
input[type="text"], textarea {
width: 100%;
padding: 18px 22px;
font-size: 18px;
border-radius: 25px;
border: 2px solid #ff6f61;
background-color: #fff9e6; /* Cream color */
color: brown;
font-weight: bold;
outline: none;
transition: border-color 0.3s ease;
}
/* Keep background and text color on focus */
input[type="text"]:focus, textarea:focus {
border-color: #ff1493;
background-color: #fff9e6 !important;
color: brown;
font-weight: bold;
box-shadow: none;
}
/* Output */
.output_text {
padding: 16px 22px;
background-color: #2e082e;
border-radius: 20px;
font-size: 18px;
color: brown;
font-weight: bold;
border: 1px solid #ff6f61;
word-wrap: break-word;
min-height: 60px;
}
/* Button */
button {
background-color: #ff6f61;
color: red;
padding: 16px 28px;
font-size: 20px;
font-weight: bold;
border-radius: 30px;
border: none;
cursor: pointer;
width: 100%;
transition: background-color 0.3s ease, transform 0.2s;
}
/* Button hover effect with animation */
button:hover {
background-color: #ff1493;
transform: scale(1.1);
}
/* Cute footer with smaller text */
footer {
text-align: center;
margin-top: 20px;
font-size: 16px;
color: #ff6f61;
}
"""
iface = gr.Interface(fn=chatbot_response,
theme="default",
inputs="text",
outputs="text",
title="Baseline Chatbot",
css=css)
iface.launch()
"""## **Fine-Tuning the Chatbot for Better Conversations (Most effective upgrade)**"""
# Load the SAMSum dataset (robust alternative to DailyDialog)
# Using the full namespace 'knkarthick/samsum' to ensure access
dataset = load_dataset("knkarthick/samsum")
# Rename 'dialogue' to 'dialog' to match the expected variable name
dataset = dataset.rename_column("dialogue", "dialog")
# Split the dataset into training and validation sets
# SAMSum already has 'train' and 'validation' splits
train_data = dataset["train"].shuffle(seed=42).select(range(len(dataset["train"]) // 20))
valid_data = dataset["validation"].shuffle(seed=42).select(range(len(dataset["validation"]) // 20))
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
# Flatten multi-turn dialog structure
text_list = ["" .join(dialog) if isinstance(dialog, list) else dialog for dialog in examples ["dialog"] ]
# Tokenize each conversation
model_inputs = tokenizer(text_list, padding="max_length", truncation=True, max_length=128)
# Set labels = input_ids
model_inputs["labels"] = model_inputs["input_ids"].copy()
return model_inputs
# Tokenizing dataset
tokenized_train = train_data.map(tokenize_function, batched=True, remove_columns=["dialog"])
tokenized_valid = valid_data.map(tokenize_function, batched=True, remove_columns=["dialog"])
# Convert dataset format
tokenized_train.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
tokenized_valid.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
training_args = TrainingArguments(
output_dir="./fine_tuned_chatbot",
learning_rate=5e-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=3,
save_steps=500,
save_total_limit=2 # keeping only the two most recent points
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_valid
)
import os
from transformers.integrations import WandbCallback
# Disable wandb logging environment variable
os.environ["WANDB_DISABLED"] = "true"
# Remove the WandbCallback that was added during Trainer initialization
# This is necessary because the Trainer was created before we disabled wandb
try:
trainer.remove_callback(WandbCallback)
except ValueError:
pass
# Train the model
trainer.train()
def chatbot_response(user_input):
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt").to(model.device)
output_ids = model.generate(
input_ids,
max_new_tokens=30,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_k=50,
top_p=0.9,
temperature=0.7,
repetition_penalty=1.2
)
response = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# Gradio UI
iface.launch()
"""#### **TESTED QUERIES**
Ex: How is it going?
Ex: I am feeling a bit stressed today. Any advice?
Ex: Can you explain why people dream?
Ex: Purple elephants dance faster in the rain, right?
## **Further Upgrading Chatbot Responses**
### **Upgrade 1: RAG (Retrieval-Augmented Generation)**
"""
# Small knowledge base
knowledge_base = {
"huggingface": "Hugging Face is a company specializing in Natural Language Processing technologies.",
"transformers": "Transformers are a type of deep learning model introduced in the paper 'Attention is All You Need'.",
"gradio": "Gradio is a Python library that allows you to rapidly create user interfaces for machine learning models."
}
def retrieve_relevant_info(query):
# Simple keyword matching
# instead using BM25 or Dense Passage Retrieval methods
for keyword, info in knowledge_base.items():
if keyword.lower() in query.lower():
return info
return ""
def chatbot_response(user_input):
retrieved_info = retrieve_relevant_info(user_input)
augmented_prompt = (retrieved_info + "\n" if retrieved_info else "") + "User: " + user_input + "\nBot:"
input_ids = tokenizer.encode(augmented_prompt, return_tensors="pt").to(model.device)
output_ids = model.generate(
input_ids,
max_new_tokens=50,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=0.85,
temperature=0.7,
top_k=50,
repetition_penalty=1.1
)
response = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response.strip()
"""### **Upgrade 2: Improving Response Coherence and Context Awareness**"""
conversation_history = []
def chatbot_response(user_input):
global conversation_history
conversation_history.append(f"User: {user_input}")
if len(conversation_history) > 6: # Limit to last 6 turns
conversation_history = conversation_history[-6:]
prompt = "\n".join(conversation_history) + "\nBot:"
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
output_ids = model.generate(
input_ids,
max_new_tokens=50,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=0.85,
temperature=0.7,
top_k=50,
repetition_penalty=1.1
)
response = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True).strip()
conversation_history.append(f"Bot: {response}")
return response
"""### **Upgrade 3: Handle Uncertain Responses with Fallback Mechanism**"""
conversation_history = []
def chatbot_response(user_input):
global conversation_history
conversation_history.append(f"User: {user_input}")
if len(conversation_history) > 6:
conversation_history = conversation_history[-6:]
prompt = "\n".join(conversation_history) + "\nBot:"
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
output_ids = model.generate(
input_ids,
max_new_tokens=50,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=0.9,
temperature=0.8,
top_k=50,
repetition_penalty=1.2
)
response = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True).strip()
# Fallback if response is too short or vague
if not response or len(response.split()) <= 2:
response = "I'm not sure I understood that. Could you please rephrase?"
conversation_history.append(f"Bot: {response}")
return response
|