Spaces:
Sleeping
Sleeping
| import os | |
| import pathlib | |
| import tempfile | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import av | |
| import gradio as gr | |
| import torch | |
| from gradio.utils import get_upload_folder | |
| from transformers import AutoModelForImageTextToText, AutoProcessor | |
| from transformers.generation.streamers import TextIteratorStreamer | |
| from optimum.intel import OVModelForVisualCausalLM | |
| default_model_id = "echarlaix/SmolVLM2-256M-Video-Instruct-openvino" | |
| model_cache = { | |
| "model_id" : default_model_id, | |
| "processor" : AutoProcessor.from_pretrained(default_model_id), | |
| "model" : OVModelForVisualCausalLM.from_pretrained(default_model_id), | |
| } | |
| def update_model(model_id): | |
| if model_cache["model_id"] != model_id: | |
| model_cache["model_id"] = model_id | |
| model_cache["processor"] = AutoProcessor.from_pretrained(model_id) | |
| model_cache["model"] = OVModelForVisualCausalLM.from_pretrained(model_id) | |
| IMAGE_FILE_TYPES = (".jpg", ".jpeg", ".png", ".webp") | |
| VIDEO_FILE_TYPES = (".mp4", ".mov", ".webm") | |
| GRADIO_TEMP_DIR = get_upload_folder() | |
| TARGET_FPS = int(os.getenv("TARGET_FPS", "3")) | |
| MAX_FRAMES = int(os.getenv("MAX_FRAMES", "30")) | |
| MAX_INPUT_TOKENS = int(os.getenv("MAX_INPUT_TOKENS", "10_000")) | |
| def get_file_type(path: str) -> str: | |
| if path.endswith(IMAGE_FILE_TYPES): | |
| return "image" | |
| if path.endswith(VIDEO_FILE_TYPES): | |
| return "video" | |
| error_message = f"Unsupported file type: {path}" | |
| raise ValueError(error_message) | |
| def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
| video_count = 0 | |
| non_video_count = 0 | |
| for path in paths: | |
| if path.endswith(VIDEO_FILE_TYPES): | |
| video_count += 1 | |
| else: | |
| non_video_count += 1 | |
| return video_count, non_video_count | |
| def validate_media_constraints(message: dict) -> bool: | |
| video_count, non_video_count = count_files_in_new_message(message["files"]) | |
| if video_count > 1: | |
| gr.Warning("Only one video is supported.") | |
| return False | |
| if video_count == 1 and non_video_count > 0: | |
| gr.Warning("Mixing images and videos is not allowed.") | |
| return False | |
| return True | |
| def extract_frames_to_tempdir( | |
| video_path: str, | |
| target_fps: float, | |
| max_frames: int | None = None, | |
| parent_dir: str | None = None, | |
| prefix: str = "frames_", | |
| ) -> str: | |
| temp_dir = tempfile.mkdtemp(prefix=prefix, dir=parent_dir) | |
| container = av.open(video_path) | |
| video_stream = container.streams.video[0] | |
| if video_stream.duration is None or video_stream.time_base is None: | |
| raise ValueError("video_stream is missing duration or time_base") | |
| time_base = video_stream.time_base | |
| duration = float(video_stream.duration * time_base) | |
| interval = 1.0 / target_fps | |
| total_frames = int(duration * target_fps) | |
| if max_frames is not None: | |
| total_frames = min(total_frames, max_frames) | |
| target_times = [i * interval for i in range(total_frames)] | |
| target_index = 0 | |
| for frame in container.decode(video=0): | |
| if frame.pts is None: | |
| continue | |
| timestamp = float(frame.pts * time_base) | |
| if target_index < len(target_times) and abs(timestamp - target_times[target_index]) < (interval / 2): | |
| frame_path = pathlib.Path(temp_dir) / f"frame_{target_index:04d}.jpg" | |
| frame.to_image().save(frame_path) | |
| target_index += 1 | |
| if max_frames is not None and target_index >= max_frames: | |
| break | |
| container.close() | |
| return temp_dir | |
| def process_new_user_message(message: dict) -> list[dict]: | |
| if not message["files"]: | |
| return [{"type": "text", "text": message["text"]}] | |
| file_types = [get_file_type(path) for path in message["files"]] | |
| if len(file_types) == 1 and file_types[0] == "video": | |
| gr.Info(f"Video will be processed at {TARGET_FPS} FPS, max {MAX_FRAMES} frames in this Space.") | |
| temp_dir = extract_frames_to_tempdir( | |
| message["files"][0], | |
| target_fps=TARGET_FPS, | |
| max_frames=MAX_FRAMES, | |
| parent_dir=GRADIO_TEMP_DIR, | |
| ) | |
| paths = sorted(pathlib.Path(temp_dir).glob("*.jpg")) | |
| return [ | |
| {"type": "text", "text": message["text"]}, | |
| *[{"type": "image", "image": path.as_posix()} for path in paths], | |
| ] | |
| return [ | |
| {"type": "text", "text": message["text"]}, | |
| *[{"type": file_type, file_type: path} for path, file_type in zip(message["files"], file_types, strict=True)], | |
| ] | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| current_user_content: list[dict] = [] | |
| for item in history: | |
| if item["role"] == "assistant": | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| current_user_content = [] | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| current_user_content.append({"type": "text", "text": content}) | |
| else: | |
| filepath = content[0] | |
| file_type = get_file_type(filepath) | |
| current_user_content.append({"type": file_type, file_type: filepath}) | |
| return messages | |
| def generate(message: dict, history: list[dict], model_id: str, max_new_tokens: int = 512) -> Iterator[str]: | |
| system_prompt = "You are a helpful assistant." | |
| update_model(model_id) | |
| processor = model_cache["processor"] | |
| model = model_cache["model"] | |
| if not validate_media_constraints(message): | |
| yield "" | |
| return | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
| messages.extend(process_history(history)) | |
| messages.append({"role": "user", "content": process_new_user_message(message)}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ) | |
| n_tokens = inputs["input_ids"].shape[1] | |
| if n_tokens > MAX_INPUT_TOKENS: | |
| gr.Warning( | |
| f"Input too long. Max {MAX_INPUT_TOKENS} tokens. Got {n_tokens} tokens. This limit is set to avoid out-of-memory errors in this Space." | |
| ) | |
| yield "" | |
| return | |
| # inputs = inputs.to(device=model.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False, | |
| disable_compile=True, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| output = "" | |
| for delta in streamer: | |
| output += delta | |
| yield output | |
| examples = [ | |
| [ | |
| { | |
| "text": "What is on the flower?", | |
| "files": ["assets/bee.jpg"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Describe this image in detail.", | |
| "files": ["assets/dogs.jpg"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "Give me a short and easy recipe for this dish", | |
| "files": ["assets/recipe_burger.webp"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips", | |
| "files": ["assets/travel_tips.jpg"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?", | |
| "files": ["assets/art_critic.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "What is the capital of France?", | |
| "files": [], | |
| } | |
| ], | |
| ] | |
| model_choices = [ | |
| "echarlaix/SmolVLM2-256M-Video-Instruct-openvino", | |
| "echarlaix/SmolVLM2-256M-Video-Instruct-openvino-8bit-woq-data-free", | |
| "echarlaix/SmolVLM2-256M-Video-Instruct-openvino-8bit-mixed", | |
| ] | |
| description = "Play with a [SmolVLM2-256M-Video-Instruct-openvino](https://huggingface.co/echarlaix/SmolVLM2-256M-Video-Instruct-openvino) and its quantized variants : [SmolVLM2-256M-Video-Instruct-openvino-8bit-woq-data-free](https://huggingface.co/echarlaix/SmolVLM2-256M-Video-Instruct-openvino-8bit-woq-data-free) and [SmolVLM2-256M-Video-Instruct-openvino-8bit-mixed](https://huggingface.co/echarlaix/SmolVLM2-256M-Video-Instruct-openvino-8bit-mixed) both obtained by respectively applying Weight-Only Quantization and Static Quantization using [Optimum Intel](https://github.com/huggingface/optimum-intel) NNCF integration. To get started, upload an image and text or try one of the examples. This demo runs on 4th Generation Intel Xeon (Sapphire Rapids) processors." | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| type="messages", | |
| textbox=gr.MultimodalTextbox( | |
| file_types=list(IMAGE_FILE_TYPES + VIDEO_FILE_TYPES), | |
| file_count="multiple", | |
| autofocus=True, | |
| ), | |
| multimodal=True, | |
| additional_inputs=[ | |
| gr.Dropdown(model_choices, value=model_choices[0], label="Model ID", visible=True), | |
| # gr.Textbox(label="System Prompt", value="You are a helpful assistant."), | |
| gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700), | |
| ], | |
| additional_inputs_accordion=gr.Accordion(label="Additional Inputs", open=True), | |
| stop_btn=False, | |
| title="Fast quantized SmolVLM2 ⚡", | |
| description=description, | |
| examples=examples, | |
| run_examples_on_click=False, | |
| cache_examples=False, | |
| css_paths="style.css", | |
| delete_cache=(1800, 1800), | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |