File size: 6,601 Bytes
207cadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import cv2

import random
from scipy import ndimage
import scipy
import scipy.stats as ss
from scipy.interpolate import interp2d
from scipy.linalg import orth

# https://github.com/haoyuc/MaskedDenoising/blob/9cd4c62a7a82178d86f197e11f2d0ba3ab1fbd5a/utils/utils_mask.py#L379

def gm_blur_kernel(mean, cov, size=15):
    center = size / 2.0 + 0.5
    k = np.zeros([size, size])
    for y in range(size):
        for x in range(size):
            cy = y - center + 1
            cx = x - center + 1
            k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)

    k = k / np.sum(k)
    return k


def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
    """ generate an anisotropic Gaussian kernel

    Args:

        ksize : e.g., 15, kernel size

        theta : [0,  pi], rotation angle range

        l1    : [0.1,50], scaling of eigenvalues

        l2    : [0.1,l1], scaling of eigenvalues

        If l1 = l2, will get an isotropic Gaussian kernel.



    Returns:

        k     : kernel

    """

    v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
    V = np.array([[v[0], v[1]], [v[1], -v[0]]])
    D = np.array([[l1, 0], [0, l2]])
    Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
    k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)

    return k


def fspecial_gaussian(hsize, sigma):
    hsize = [hsize, hsize]
    siz = [(hsize[0]-1.0)/2.0, (hsize[1]-1.0)/2.0]
    std = sigma
    [x, y] = np.meshgrid(np.arange(-siz[1], siz[1]+1), np.arange(-siz[0], siz[0]+1))
    arg = -(x*x + y*y)/(2*std*std)
    h = np.exp(arg)
    h[h < scipy.finfo(float).eps * h.max()] = 0
    sumh = h.sum()
    if sumh != 0:
        h = h/sumh
    return h


def fspecial_laplacian(alpha):
    alpha = max([0, min([alpha,1])])
    h1 = alpha/(alpha+1)
    h2 = (1-alpha)/(alpha+1)
    h = [[h1, h2, h1], [h2, -4/(alpha+1), h2], [h1, h2, h1]]
    h = np.array(h)
    return h


def fspecial(filter_type, *args, **kwargs):
    '''

    python code from:

    https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py

    '''
    if filter_type == 'gaussian':
        return fspecial_gaussian(*args, **kwargs)
    if filter_type == 'laplacian':
        return fspecial_laplacian(*args, **kwargs)


def add_blur(img, sf=4):
    wd2 = 4.0 + sf
    wd = 2.0 + 0.2*sf
    if random.random() < 0.5:
        l1 = wd2*random.random()
        l2 = wd2*random.random()
        k = anisotropic_Gaussian(ksize=2*random.randint(2,11)+3, theta=random.random()*np.pi, l1=l1, l2=l2)
    else:
        k = fspecial('gaussian', 2*random.randint(2,11)+3, wd*random.random())
    img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')

    return img


def add_resize(img, sf=4):
    rnum = np.random.rand()
    if rnum > 0.8:  # up
        sf1 = random.uniform(1, 2)
    elif rnum < 0.7:  # down
        sf1 = random.uniform(0.5/sf, 1)
    else:
        sf1 = 1.0
    img = cv2.resize(img, (int(sf1*img.shape[1]), int(sf1*img.shape[0])), interpolation=random.choice([1, 2, 3]))
    img = np.clip(img, 0.0, 1.0)

    return img


def add_speckle_noise(img, noise_level1=2, noise_level2=25):
    noise_level = random.randint(noise_level1, noise_level2)
    img = np.clip(img, 0.0, 1.0)
    rnum = random.random()
    if rnum > 0.6:
        img += img*np.random.normal(0, noise_level/255.0, img.shape).astype(np.float32)
    elif rnum < 0.4:
        img += img*np.random.normal(0, noise_level/255.0, (*img.shape[:2], 1)).astype(np.float32)
    else:
        L = noise_level2/255.
        D = np.diag(np.random.rand(3))
        U = orth(np.random.rand(3,3))
        conv = np.dot(np.dot(np.transpose(U), D), U)
        img += img*np.random.multivariate_normal([0,0,0], np.abs(L**2*conv), img.shape[:2]).astype(np.float32)
    img = np.clip(img, 0.0, 1.0)
    return img


def add_Poisson_noise(img):
    img = np.clip((img * 255.0).round(), 0, 255) / 255.
    vals = 10**(2*random.random()+2.0)  # [2, 4]
    if random.random() < 0.5:
        img = np.random.poisson(img * vals).astype(np.float32) / vals
    else:
        img_gray = np.dot(img[...,:3], [0.299, 0.587, 0.114])
        img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
        noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
        img += noise_gray[:, :, np.newaxis]
    img = np.clip(img, 0.0, 1.0)
    return img

def single2uint(img):
    return np.uint8((img.clip(0, 1)*255.).round())

def uint2single(img):
    return np.float32(img/255.)

def add_JPEG_noise(img):
    quality_factor = random.randint(30, 95)
    img = cv2.cvtColor(single2uint(img), cv2.COLOR_RGB2BGR)
    result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
    img = cv2.imdecode(encimg, 1)
    img = cv2.cvtColor(uint2single(img), cv2.COLOR_BGR2RGB)
    return img
    
def add_correlated_Gaussian_noise(img, noise_level1=2, noise_level2=25, filter_size=3, generator=None):
    if generator is None:
        rng = np.random.default_rng()
    else:
        rng = generator

    if noise_level1 == noise_level2:
        noise_level = noise_level1
    else:
        noise_level = rng.integers(noise_level1, noise_level2, size=1)

    n = rng.normal(0.0, noise_level / 255.0, img.shape).astype(np.float32)
    n = ndimage.uniform_filter(n, size=filter_size)
    result = np.clip(img + n, 0.0, 1.0)

    return result

def add_Gaussian_noise(img, noise_level1=2, noise_level2=25, generator=None, channel_wise=False):
    if generator is None:
        rng = np.random.default_rng()
    else:
        rng = generator

    C, H, W = img.shape
    if channel_wise:
        if noise_level1 == noise_level2:
            noise_level = noise_level1
        else:
            noise_level = rng.integers(noise_level1, noise_level2, size=3)
        n = np.concatenate([rng.normal(0.0, noise_level[i] / 255.0, (1, H, W)).astype(np.float32) for i, _ in enumerate(range(C))], axis=0)
    else:
        if noise_level1 == noise_level2:
            noise_level = noise_level1
        else:
            noise_level = rng.integers(noise_level1, noise_level2, size=1)
    
        n = rng.normal(0.0, noise_level / 255.0, (C, H, W)).astype(np.float32)
    result = np.clip(img + n, 0.0, 1.0)

    return result, noise_level