Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,601 Bytes
207cadb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import numpy as np
import cv2
import random
from scipy import ndimage
import scipy
import scipy.stats as ss
from scipy.interpolate import interp2d
from scipy.linalg import orth
# https://github.com/haoyuc/MaskedDenoising/blob/9cd4c62a7a82178d86f197e11f2d0ba3ab1fbd5a/utils/utils_mask.py#L379
def gm_blur_kernel(mean, cov, size=15):
center = size / 2.0 + 0.5
k = np.zeros([size, size])
for y in range(size):
for x in range(size):
cy = y - center + 1
cx = x - center + 1
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
k = k / np.sum(k)
return k
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k
def fspecial_gaussian(hsize, sigma):
hsize = [hsize, hsize]
siz = [(hsize[0]-1.0)/2.0, (hsize[1]-1.0)/2.0]
std = sigma
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1]+1), np.arange(-siz[0], siz[0]+1))
arg = -(x*x + y*y)/(2*std*std)
h = np.exp(arg)
h[h < scipy.finfo(float).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h = h/sumh
return h
def fspecial_laplacian(alpha):
alpha = max([0, min([alpha,1])])
h1 = alpha/(alpha+1)
h2 = (1-alpha)/(alpha+1)
h = [[h1, h2, h1], [h2, -4/(alpha+1), h2], [h1, h2, h1]]
h = np.array(h)
return h
def fspecial(filter_type, *args, **kwargs):
'''
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
'''
if filter_type == 'gaussian':
return fspecial_gaussian(*args, **kwargs)
if filter_type == 'laplacian':
return fspecial_laplacian(*args, **kwargs)
def add_blur(img, sf=4):
wd2 = 4.0 + sf
wd = 2.0 + 0.2*sf
if random.random() < 0.5:
l1 = wd2*random.random()
l2 = wd2*random.random()
k = anisotropic_Gaussian(ksize=2*random.randint(2,11)+3, theta=random.random()*np.pi, l1=l1, l2=l2)
else:
k = fspecial('gaussian', 2*random.randint(2,11)+3, wd*random.random())
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
return img
def add_resize(img, sf=4):
rnum = np.random.rand()
if rnum > 0.8: # up
sf1 = random.uniform(1, 2)
elif rnum < 0.7: # down
sf1 = random.uniform(0.5/sf, 1)
else:
sf1 = 1.0
img = cv2.resize(img, (int(sf1*img.shape[1]), int(sf1*img.shape[0])), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
return img
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
img = np.clip(img, 0.0, 1.0)
rnum = random.random()
if rnum > 0.6:
img += img*np.random.normal(0, noise_level/255.0, img.shape).astype(np.float32)
elif rnum < 0.4:
img += img*np.random.normal(0, noise_level/255.0, (*img.shape[:2], 1)).astype(np.float32)
else:
L = noise_level2/255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3,3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img += img*np.random.multivariate_normal([0,0,0], np.abs(L**2*conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_Poisson_noise(img):
img = np.clip((img * 255.0).round(), 0, 255) / 255.
vals = 10**(2*random.random()+2.0) # [2, 4]
if random.random() < 0.5:
img = np.random.poisson(img * vals).astype(np.float32) / vals
else:
img_gray = np.dot(img[...,:3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0)
return img
def single2uint(img):
return np.uint8((img.clip(0, 1)*255.).round())
def uint2single(img):
return np.float32(img/255.)
def add_JPEG_noise(img):
quality_factor = random.randint(30, 95)
img = cv2.cvtColor(single2uint(img), cv2.COLOR_RGB2BGR)
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(uint2single(img), cv2.COLOR_BGR2RGB)
return img
def add_correlated_Gaussian_noise(img, noise_level1=2, noise_level2=25, filter_size=3, generator=None):
if generator is None:
rng = np.random.default_rng()
else:
rng = generator
if noise_level1 == noise_level2:
noise_level = noise_level1
else:
noise_level = rng.integers(noise_level1, noise_level2, size=1)
n = rng.normal(0.0, noise_level / 255.0, img.shape).astype(np.float32)
n = ndimage.uniform_filter(n, size=filter_size)
result = np.clip(img + n, 0.0, 1.0)
return result
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25, generator=None, channel_wise=False):
if generator is None:
rng = np.random.default_rng()
else:
rng = generator
C, H, W = img.shape
if channel_wise:
if noise_level1 == noise_level2:
noise_level = noise_level1
else:
noise_level = rng.integers(noise_level1, noise_level2, size=3)
n = np.concatenate([rng.normal(0.0, noise_level[i] / 255.0, (1, H, W)).astype(np.float32) for i, _ in enumerate(range(C))], axis=0)
else:
if noise_level1 == noise_level2:
noise_level = noise_level1
else:
noise_level = rng.integers(noise_level1, noise_level2, size=1)
n = rng.normal(0.0, noise_level / 255.0, (C, H, W)).astype(np.float32)
result = np.clip(img + n, 0.0, 1.0)
return result, noise_level
|