File size: 9,890 Bytes
207cadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# https://github.com/XPixelGroup/BasicSR

import torch
import functools
from torch import nn as nn
from torch.nn import functional as F

_reduction_modes = ['none', 'mean', 'sum']

def reduce_loss(loss, reduction):
    """Reduce loss as specified.



    Args:

        loss (Tensor): Elementwise loss tensor.

        reduction (str): Options are 'none', 'mean' and 'sum'.



    Returns:

        Tensor: Reduced loss tensor.

    """
    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, elementwise_mean:1, sum: 2
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.mean()
    else:
        return loss.sum()


def weight_reduce_loss(loss, weight=None, reduction='mean'):
    """Apply element-wise weight and reduce loss.



    Args:

        loss (Tensor): Element-wise loss.

        weight (Tensor): Element-wise weights. Default: None.

        reduction (str): Same as built-in losses of PyTorch. Options are

            'none', 'mean' and 'sum'. Default: 'mean'.



    Returns:

        Tensor: Loss values.

    """
    # if weight is specified, apply element-wise weight
    if weight is not None:
        assert weight.dim() == loss.dim()
        assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
        loss = loss * weight

    # if weight is not specified or reduction is sum, just reduce the loss
    if weight is None or reduction == 'sum':
        loss = reduce_loss(loss, reduction)
    # if reduction is mean, then compute mean over weight region
    elif reduction == 'mean':
        if weight.size(1) > 1:
            weight = weight.sum()
        else:
            weight = weight.sum() * loss.size(1)
        loss = loss.sum() / weight

    return loss


def weighted_loss(loss_func):
    """Create a weighted version of a given loss function.



    To use this decorator, the loss function must have the signature like

    `loss_func(pred, target, **kwargs)`. The function only needs to compute

    element-wise loss without any reduction. This decorator will add weight

    and reduction arguments to the function. The decorated function will have

    the signature like `loss_func(pred, target, weight=None, reduction='mean',

    **kwargs)`.



    :Example:



    >>> import torch

    >>> @weighted_loss

    >>> def l1_loss(pred, target):

    >>>     return (pred - target).abs()



    >>> pred = torch.Tensor([0, 2, 3])

    >>> target = torch.Tensor([1, 1, 1])

    >>> weight = torch.Tensor([1, 0, 1])



    >>> l1_loss(pred, target)

    tensor(1.3333)

    >>> l1_loss(pred, target, weight)

    tensor(1.5000)

    >>> l1_loss(pred, target, reduction='none')

    tensor([1., 1., 2.])

    >>> l1_loss(pred, target, weight, reduction='sum')

    tensor(3.)

    """

    @functools.wraps(loss_func)
    def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
        # get element-wise loss
        loss = loss_func(pred, target, **kwargs)
        loss = weight_reduce_loss(loss, weight, reduction)
        return loss

    return wrapper


def get_local_weights(residual, ksize):
    """Get local weights for generating the artifact map of LDL.



    It is only called by the `get_refined_artifact_map` function.



    Args:

        residual (Tensor): Residual between predicted and ground truth images.

        ksize (Int): size of the local window.



    Returns:

        Tensor: weight for each pixel to be discriminated as an artifact pixel

    """

    pad = (ksize - 1) // 2
    residual_pad = F.pad(residual, pad=[pad, pad, pad, pad], mode='reflect')

    unfolded_residual = residual_pad.unfold(2, ksize, 1).unfold(3, ksize, 1)
    pixel_level_weight = torch.var(unfolded_residual, dim=(-1, -2), unbiased=True, keepdim=True).squeeze(-1).squeeze(-1)

    return pixel_level_weight


def get_refined_artifact_map(img_gt, img_output, img_ema, ksize):
    """Calculate the artifact map of LDL

    (Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution. In CVPR 2022)



    Args:

        img_gt (Tensor): ground truth images.

        img_output (Tensor): output images given by the optimizing model.

        img_ema (Tensor): output images given by the ema model.

        ksize (Int): size of the local window.



    Returns:

        overall_weight: weight for each pixel to be discriminated as an artifact pixel

        (calculated based on both local and global observations).

    """

    residual_ema = torch.sum(torch.abs(img_gt - img_ema), 1, keepdim=True)
    residual_sr = torch.sum(torch.abs(img_gt - img_output), 1, keepdim=True)

    patch_level_weight = torch.var(residual_sr.clone(), dim=(-1, -2, -3), keepdim=True)**(1 / 5)
    pixel_level_weight = get_local_weights(residual_sr.clone(), ksize)
    overall_weight = patch_level_weight * pixel_level_weight

    overall_weight[residual_sr < residual_ema] = 0

    return overall_weight

@weighted_loss
def l1_loss(pred, target):
    return F.l1_loss(pred, target, reduction='none')


@weighted_loss
def mse_loss(pred, target):
    return F.mse_loss(pred, target, reduction='none')


@weighted_loss
def charbonnier_loss(pred, target, eps=1e-12):
    return torch.sqrt((pred - target)**2 + eps)



class L1Loss(nn.Module):
    """L1 (mean absolute error, MAE) loss.



    Args:

        loss_weight (float): Loss weight for L1 loss. Default: 1.0.

        reduction (str): Specifies the reduction to apply to the output.

            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.

    """

    def __init__(self, loss_weight=1.0, reduction='mean'):
        super(L1Loss, self).__init__()
        if reduction not in ['none', 'mean', 'sum']:
            raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')

        self.loss_weight = loss_weight
        self.reduction = reduction

    def forward(self, pred, target, weight=None, **kwargs):
        """

        Args:

            pred (Tensor): of shape (N, C, H, W). Predicted tensor.

            target (Tensor): of shape (N, C, H, W). Ground truth tensor.

            weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.

        """
        return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction)



class MSELoss(nn.Module):
    """MSE (L2) loss.



    Args:

        loss_weight (float): Loss weight for MSE loss. Default: 1.0.

        reduction (str): Specifies the reduction to apply to the output.

            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.

    """

    def __init__(self, loss_weight=1.0, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['none', 'mean', 'sum']:
            raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')

        self.loss_weight = loss_weight
        self.reduction = reduction

    def forward(self, pred, target, weight=None, **kwargs):
        """

        Args:

            pred (Tensor): of shape (N, C, H, W). Predicted tensor.

            target (Tensor): of shape (N, C, H, W). Ground truth tensor.

            weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.

        """
        return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction)



class CharbonnierLoss(nn.Module):
    """Charbonnier loss (one variant of Robust L1Loss, a differentiable

    variant of L1Loss).



    Described in "Deep Laplacian Pyramid Networks for Fast and Accurate

        Super-Resolution".



    Args:

        loss_weight (float): Loss weight for L1 loss. Default: 1.0.

        reduction (str): Specifies the reduction to apply to the output.

            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.

        eps (float): A value used to control the curvature near zero. Default: 1e-12.

    """

    def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
        super(CharbonnierLoss, self).__init__()
        if reduction not in ['none', 'mean', 'sum']:
            raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')

        self.loss_weight = loss_weight
        self.reduction = reduction
        self.eps = eps

    def forward(self, pred, target, weight=None, **kwargs):
        """

        Args:

            pred (Tensor): of shape (N, C, H, W). Predicted tensor.

            target (Tensor): of shape (N, C, H, W). Ground truth tensor.

            weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.

        """
        return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction)



class WeightedTVLoss(L1Loss):
    """Weighted TV loss.



    Args:

        loss_weight (float): Loss weight. Default: 1.0.

    """

    def __init__(self, loss_weight=1.0, reduction='mean'):
        if reduction not in ['mean', 'sum']:
            raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum')
        super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction)

    def forward(self, pred, weight=None):
        if weight is None:
            y_weight = None
            x_weight = None
        else:
            y_weight = weight[:, :, :-1, :]
            x_weight = weight[:, :, :, :-1]

        y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight)
        x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight)

        loss = x_diff + y_diff

        return loss