DimensioDepth / backend /utils /image_processing.py
wwieerrz's picture
🎨 Launch DimensioDepth - Advanced AI Depth Estimation
463afdd
raw
history blame
4.61 kB
import cv2
import numpy as np
from PIL import Image
import io
import base64
from typing import Tuple, Optional
def load_image_from_bytes(image_bytes: bytes) -> np.ndarray:
"""
Load image from bytes into numpy array
Args:
image_bytes: Raw image bytes
Returns:
Image as RGB numpy array
"""
image = Image.open(io.BytesIO(image_bytes))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
return np.array(image)
def load_image_from_base64(base64_string: str) -> np.ndarray:
"""
Load image from base64 string
Args:
base64_string: Base64 encoded image
Returns:
Image as RGB numpy array
"""
# Remove data URL prefix if present
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
image_bytes = base64.b64decode(base64_string)
return load_image_from_bytes(image_bytes)
def resize_image(
image: np.ndarray,
target_size: int,
maintain_aspect: bool = True
) -> Tuple[np.ndarray, Tuple[int, int]]:
"""
Resize image to target size
Args:
image: Input image array
target_size: Target size (will be longest edge if maintain_aspect=True)
maintain_aspect: Whether to maintain aspect ratio
Returns:
Tuple of (resized_image, original_size)
"""
h, w = image.shape[:2]
original_size = (w, h)
if maintain_aspect:
# Calculate new dimensions maintaining aspect ratio
if h > w:
new_h = target_size
new_w = int(w * (target_size / h))
else:
new_w = target_size
new_h = int(h * (target_size / w))
else:
new_w = target_size
new_h = target_size
resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
return resized, original_size
def normalize_image(image: np.ndarray) -> np.ndarray:
"""
Normalize image for model input
Args:
image: Input image array (RGB)
Returns:
Normalized image array
"""
# Convert to float32 and normalize to [0, 1]
image = image.astype(np.float32) / 255.0
# ImageNet normalization
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
return image
def depth_to_colormap(
depth: np.ndarray,
colormap: int = cv2.COLORMAP_INFERNO
) -> np.ndarray:
"""
Convert depth map to colorized visualization
Args:
depth: Depth map array
colormap: OpenCV colormap constant
Returns:
Colorized depth map (RGB)
"""
# Normalize depth to 0-255
depth_normalized = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX)
depth_uint8 = depth_normalized.astype(np.uint8)
# Apply colormap
colored = cv2.applyColorMap(depth_uint8, colormap)
# Convert BGR to RGB
colored = cv2.cvtColor(colored, cv2.COLOR_BGR2RGB)
return colored
def array_to_base64(image: np.ndarray, format: str = 'PNG') -> str:
"""
Convert numpy array to base64 string
Args:
image: Image array
format: Output format (PNG, JPEG, etc.)
Returns:
Base64 encoded image string
"""
pil_image = Image.fromarray(image.astype(np.uint8))
buffer = io.BytesIO()
pil_image.save(buffer, format=format)
buffer.seek(0)
base64_string = base64.b64encode(buffer.read()).decode('utf-8')
return f"data:image/{format.lower()};base64,{base64_string}"
def array_to_bytes(image: np.ndarray, format: str = 'PNG') -> bytes:
"""
Convert numpy array to bytes
Args:
image: Image array
format: Output format (PNG, JPEG, etc.)
Returns:
Image bytes
"""
pil_image = Image.fromarray(image.astype(np.uint8))
buffer = io.BytesIO()
pil_image.save(buffer, format=format)
buffer.seek(0)
return buffer.read()
def create_side_by_side(
original: np.ndarray,
depth: np.ndarray,
colormap: bool = True
) -> np.ndarray:
"""
Create side-by-side comparison of original and depth
Args:
original: Original image
depth: Depth map
colormap: Whether to apply colormap to depth
Returns:
Side-by-side image
"""
# Ensure same height
h = original.shape[0]
depth_resized = cv2.resize(depth, (depth.shape[1], h))
if colormap and len(depth_resized.shape) == 2:
depth_resized = depth_to_colormap(depth_resized)
# Concatenate horizontally
combined = np.hstack([original, depth_resized])
return combined