David Driscoll
commited on
Commit
·
b37a8e6
1
Parent(s):
8947b35
Caching and lag reduction
Browse files
app.py
CHANGED
|
@@ -7,144 +7,171 @@ from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
|
| 7 |
from PIL import Image
|
| 8 |
import mediapipe as mp
|
| 9 |
from fer import FER # Facial emotion recognition
|
| 10 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 11 |
|
| 12 |
# -----------------------------
|
| 13 |
-
#
|
| 14 |
# -----------------------------
|
| 15 |
-
|
| 16 |
-
latest_results = {
|
| 17 |
-
"posture": None,
|
| 18 |
-
"emotion": None,
|
| 19 |
-
"objects": None,
|
| 20 |
-
"faces": None
|
| 21 |
-
}
|
| 22 |
-
futures = {
|
| 23 |
-
"posture": None,
|
| 24 |
-
"emotion": None,
|
| 25 |
-
"objects": None,
|
| 26 |
-
"faces": None
|
| 27 |
-
}
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
if futures[key] is None:
|
| 37 |
-
futures[key] = executor.submit(func, image)
|
| 38 |
-
return latest_results[key]
|
| 39 |
-
# Otherwise, compute synchronously (blocking) to initialize the cache.
|
| 40 |
-
result = func(image)
|
| 41 |
-
latest_results[key] = result
|
| 42 |
-
futures[key] = executor.submit(func, image)
|
| 43 |
-
return result
|
| 44 |
|
| 45 |
# -----------------------------
|
| 46 |
# Initialize Models and Helpers
|
| 47 |
# -----------------------------
|
| 48 |
-
# MediaPipe Pose for posture analysis
|
| 49 |
mp_pose = mp.solutions.pose
|
| 50 |
pose = mp_pose.Pose()
|
| 51 |
mp_drawing = mp.solutions.drawing_utils
|
| 52 |
|
| 53 |
-
# MediaPipe Face Detection for face detection
|
| 54 |
mp_face_detection = mp.solutions.face_detection
|
| 55 |
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
| 56 |
|
| 57 |
-
# Object Detection Model: Faster R-CNN (pretrained on COCO)
|
| 58 |
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
| 59 |
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
| 60 |
)
|
| 61 |
object_detection_model.eval()
|
| 62 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
| 63 |
|
| 64 |
-
# Facial Emotion Detection using FER (requires TensorFlow)
|
| 65 |
emotion_detector = FER(mtcnn=True)
|
| 66 |
|
| 67 |
# -----------------------------
|
| 68 |
-
#
|
| 69 |
# -----------------------------
|
| 70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 72 |
-
|
| 73 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 74 |
-
posture_result = "No posture detected"
|
| 75 |
pose_results = pose.process(frame_rgb)
|
| 76 |
if pose_results.pose_landmarks:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
| 81 |
-
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
| 82 |
)
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
def
|
| 87 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 88 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 89 |
emotions = emotion_detector.detect_emotions(frame_rgb)
|
| 90 |
if emotions:
|
| 91 |
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
| 92 |
-
|
| 93 |
else:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
return annotated_image, f"Emotion Analysis: {emotion_text}"
|
| 97 |
|
| 98 |
-
def
|
| 99 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 100 |
-
output_frame = frame.copy()
|
| 101 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 102 |
image_pil = Image.fromarray(frame_rgb)
|
| 103 |
img_tensor = obj_transform(image_pil)
|
| 104 |
with torch.no_grad():
|
| 105 |
detections = object_detection_model([img_tensor])[0]
|
| 106 |
threshold = 0.8
|
| 107 |
-
|
| 108 |
-
for box in
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def _analyze_faces(image):
|
| 116 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 117 |
-
|
| 118 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 119 |
face_results = face_detection.process(frame_rgb)
|
| 120 |
-
|
| 121 |
if face_results.detections:
|
| 122 |
-
face_result = f"Detected {len(face_results.detections)} face(s)"
|
| 123 |
-
h, w, _ = output_frame.shape
|
| 124 |
for detection in face_results.detections:
|
| 125 |
bbox = detection.location_data.relative_bounding_box
|
| 126 |
x = int(bbox.xmin * w)
|
| 127 |
y = int(bbox.ymin * h)
|
| 128 |
box_w = int(bbox.width * w)
|
| 129 |
box_h = int(bbox.height * h)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# -----------------------------
|
| 135 |
-
#
|
|
|
|
| 136 |
# -----------------------------
|
| 137 |
-
def
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
def
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
def
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
def
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
# -----------------------------
|
| 150 |
# Custom CSS for a High-Tech Look (White Font)
|
|
@@ -183,7 +210,7 @@ body {
|
|
| 183 |
# Create Individual Interfaces for Each Analysis
|
| 184 |
# -----------------------------
|
| 185 |
posture_interface = gr.Interface(
|
| 186 |
-
fn=
|
| 187 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
|
| 188 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
|
| 189 |
title="Posture Analysis",
|
|
@@ -192,7 +219,7 @@ posture_interface = gr.Interface(
|
|
| 192 |
)
|
| 193 |
|
| 194 |
emotion_interface = gr.Interface(
|
| 195 |
-
fn=
|
| 196 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
|
| 197 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
|
| 198 |
title="Emotion Analysis",
|
|
@@ -201,7 +228,7 @@ emotion_interface = gr.Interface(
|
|
| 201 |
)
|
| 202 |
|
| 203 |
objects_interface = gr.Interface(
|
| 204 |
-
fn=
|
| 205 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
|
| 206 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
|
| 207 |
title="Object Detection",
|
|
@@ -210,7 +237,7 @@ objects_interface = gr.Interface(
|
|
| 210 |
)
|
| 211 |
|
| 212 |
faces_interface = gr.Interface(
|
| 213 |
-
fn=
|
| 214 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
|
| 215 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
|
| 216 |
title="Face Detection",
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
import mediapipe as mp
|
| 9 |
from fer import FER # Facial emotion recognition
|
|
|
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
+
# Configuration: Adjust skip rate (lower = more frequent heavy updates)
|
| 13 |
# -----------------------------
|
| 14 |
+
SKIP_RATE = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# -----------------------------
|
| 17 |
+
# Global caches for overlay info and frame counters
|
| 18 |
+
# -----------------------------
|
| 19 |
+
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
|
| 20 |
+
emotion_cache = {"text": "Initializing...", "counter": 0}
|
| 21 |
+
objects_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
| 22 |
+
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# -----------------------------
|
| 25 |
# Initialize Models and Helpers
|
| 26 |
# -----------------------------
|
|
|
|
| 27 |
mp_pose = mp.solutions.pose
|
| 28 |
pose = mp_pose.Pose()
|
| 29 |
mp_drawing = mp.solutions.drawing_utils
|
| 30 |
|
|
|
|
| 31 |
mp_face_detection = mp.solutions.face_detection
|
| 32 |
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
| 33 |
|
|
|
|
| 34 |
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
| 35 |
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
| 36 |
)
|
| 37 |
object_detection_model.eval()
|
| 38 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
| 39 |
|
|
|
|
| 40 |
emotion_detector = FER(mtcnn=True)
|
| 41 |
|
| 42 |
# -----------------------------
|
| 43 |
+
# Fast Overlay Functions
|
| 44 |
# -----------------------------
|
| 45 |
+
def draw_posture_overlay(raw_frame, landmarks):
|
| 46 |
+
# Draw each landmark as a small circle
|
| 47 |
+
for (x, y) in landmarks:
|
| 48 |
+
cv2.circle(raw_frame, (x, y), 4, (0, 255, 0), -1)
|
| 49 |
+
return raw_frame
|
| 50 |
+
|
| 51 |
+
def draw_boxes_overlay(raw_frame, boxes, color):
|
| 52 |
+
for (x1, y1, x2, y2) in boxes:
|
| 53 |
+
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
|
| 54 |
+
return raw_frame
|
| 55 |
+
|
| 56 |
+
# -----------------------------
|
| 57 |
+
# Heavy (Synchronous) Detection Functions
|
| 58 |
+
# These functions compute the overlay info on the current frame.
|
| 59 |
+
# -----------------------------
|
| 60 |
+
def compute_posture_overlay(image):
|
| 61 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 62 |
+
h, w, _ = frame.shape
|
| 63 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
| 64 |
pose_results = pose.process(frame_rgb)
|
| 65 |
if pose_results.pose_landmarks:
|
| 66 |
+
landmarks = []
|
| 67 |
+
for lm in pose_results.pose_landmarks.landmark:
|
| 68 |
+
landmarks.append((int(lm.x * w), int(lm.y * h)))
|
|
|
|
|
|
|
| 69 |
)
|
| 70 |
+
text = "Posture detected"
|
| 71 |
+
else:
|
| 72 |
+
landmarks = []
|
| 73 |
+
text = "No posture detected"
|
| 74 |
+
return landmarks, text
|
| 75 |
|
| 76 |
+
def compute_emotion_overlay(image):
|
| 77 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 78 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 79 |
emotions = emotion_detector.detect_emotions(frame_rgb)
|
| 80 |
if emotions:
|
| 81 |
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
| 82 |
+
text = f"{top_emotion} ({score:.2f})"
|
| 83 |
else:
|
| 84 |
+
text = "No face detected"
|
| 85 |
+
return text
|
|
|
|
| 86 |
|
| 87 |
+
def compute_objects_overlay(image):
|
| 88 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
|
|
|
| 89 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 90 |
image_pil = Image.fromarray(frame_rgb)
|
| 91 |
img_tensor = obj_transform(image_pil)
|
| 92 |
with torch.no_grad():
|
| 93 |
detections = object_detection_model([img_tensor])[0]
|
| 94 |
threshold = 0.8
|
| 95 |
+
boxes = []
|
| 96 |
+
for box, score in zip(detections["boxes"], detections["scores"]):
|
| 97 |
+
if score > threshold:
|
| 98 |
+
boxes.append(tuple(box.int().cpu().numpy()))
|
| 99 |
+
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
|
| 100 |
+
return boxes, text
|
| 101 |
+
|
| 102 |
+
def compute_faces_overlay(image):
|
|
|
|
| 103 |
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 104 |
+
h, w, _ = frame.shape
|
| 105 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 106 |
face_results = face_detection.process(frame_rgb)
|
| 107 |
+
boxes = []
|
| 108 |
if face_results.detections:
|
|
|
|
|
|
|
| 109 |
for detection in face_results.detections:
|
| 110 |
bbox = detection.location_data.relative_bounding_box
|
| 111 |
x = int(bbox.xmin * w)
|
| 112 |
y = int(bbox.ymin * h)
|
| 113 |
box_w = int(bbox.width * w)
|
| 114 |
box_h = int(bbox.height * h)
|
| 115 |
+
boxes.append((x, y, x + box_w, y + box_h))
|
| 116 |
+
text = f"Detected {len(boxes)} face(s)"
|
| 117 |
+
else:
|
| 118 |
+
text = "No faces detected"
|
| 119 |
+
return boxes, text
|
| 120 |
|
| 121 |
# -----------------------------
|
| 122 |
+
# Main Analysis Functions (run every frame)
|
| 123 |
+
# They update the cache every SKIP_RATE frames and always return a current frame with overlay.
|
| 124 |
# -----------------------------
|
| 125 |
+
def analyze_posture_current(image):
|
| 126 |
+
global posture_cache
|
| 127 |
+
posture_cache["counter"] += 1
|
| 128 |
+
current_frame = np.array(image) # raw RGB frame (as numpy array)
|
| 129 |
+
# Update overlay info every SKIP_RATE frames
|
| 130 |
+
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
|
| 131 |
+
landmarks, text = compute_posture_overlay(image)
|
| 132 |
+
posture_cache["landmarks"] = landmarks
|
| 133 |
+
posture_cache["text"] = text
|
| 134 |
+
# Draw cached landmarks on the current frame copy
|
| 135 |
+
output = current_frame.copy()
|
| 136 |
+
if posture_cache["landmarks"]:
|
| 137 |
+
output = draw_posture_overlay(output, posture_cache["landmarks"])
|
| 138 |
+
return output, f"Posture Analysis: {posture_cache['text']}"
|
| 139 |
|
| 140 |
+
def analyze_emotion_current(image):
|
| 141 |
+
global emotion_cache
|
| 142 |
+
emotion_cache["counter"] += 1
|
| 143 |
+
current_frame = np.array(image)
|
| 144 |
+
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
|
| 145 |
+
text = compute_emotion_overlay(image)
|
| 146 |
+
emotion_cache["text"] = text
|
| 147 |
+
# For emotion, we don't overlay anything; just return the current frame.
|
| 148 |
+
return current_frame, f"Emotion Analysis: {emotion_cache['text']}"
|
| 149 |
|
| 150 |
+
def analyze_objects_current(image):
|
| 151 |
+
global objects_cache
|
| 152 |
+
objects_cache["counter"] += 1
|
| 153 |
+
current_frame = np.array(image)
|
| 154 |
+
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
|
| 155 |
+
boxes, text = compute_objects_overlay(image)
|
| 156 |
+
objects_cache["boxes"] = boxes
|
| 157 |
+
objects_cache["text"] = text
|
| 158 |
+
output = current_frame.copy()
|
| 159 |
+
if objects_cache["boxes"]:
|
| 160 |
+
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
|
| 161 |
+
return output, f"Object Detection: {objects_cache['text']}"
|
| 162 |
|
| 163 |
+
def analyze_faces_current(image):
|
| 164 |
+
global faces_cache
|
| 165 |
+
faces_cache["counter"] += 1
|
| 166 |
+
current_frame = np.array(image)
|
| 167 |
+
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
|
| 168 |
+
boxes, text = compute_faces_overlay(image)
|
| 169 |
+
faces_cache["boxes"] = boxes
|
| 170 |
+
faces_cache["text"] = text
|
| 171 |
+
output = current_frame.copy()
|
| 172 |
+
if faces_cache["boxes"]:
|
| 173 |
+
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
|
| 174 |
+
return output, f"Face Detection: {faces_cache['text']}"
|
| 175 |
|
| 176 |
# -----------------------------
|
| 177 |
# Custom CSS for a High-Tech Look (White Font)
|
|
|
|
| 210 |
# Create Individual Interfaces for Each Analysis
|
| 211 |
# -----------------------------
|
| 212 |
posture_interface = gr.Interface(
|
| 213 |
+
fn=analyze_posture_current,
|
| 214 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
|
| 215 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
|
| 216 |
title="Posture Analysis",
|
|
|
|
| 219 |
)
|
| 220 |
|
| 221 |
emotion_interface = gr.Interface(
|
| 222 |
+
fn=analyze_emotion_current,
|
| 223 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
|
| 224 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
|
| 225 |
title="Emotion Analysis",
|
|
|
|
| 228 |
)
|
| 229 |
|
| 230 |
objects_interface = gr.Interface(
|
| 231 |
+
fn=analyze_objects_current,
|
| 232 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
|
| 233 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
|
| 234 |
title="Object Detection",
|
|
|
|
| 237 |
)
|
| 238 |
|
| 239 |
faces_interface = gr.Interface(
|
| 240 |
+
fn=analyze_faces_current,
|
| 241 |
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
|
| 242 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
|
| 243 |
title="Face Detection",
|