Spaces:
Sleeping
Sleeping
File size: 61,140 Bytes
519b145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 |
"""
Slow Path Handler - Full RAG pipeline for complex queries.
"""
import os
import time
import logging
import hashlib
from typing import Dict, Any, Optional, List, Set
import unicodedata
import re
from concurrent.futures import ThreadPoolExecutor, Future
import threading
from hue_portal.core.chatbot import get_chatbot, RESPONSE_TEMPLATES
from hue_portal.core.models import (
Fine,
Procedure,
Office,
Advisory,
LegalSection,
LegalDocument,
)
from hue_portal.core.search_ml import search_with_ml
from hue_portal.core.pure_semantic_search import pure_semantic_search
# Lazy import reranker to avoid blocking startup (FlagEmbedding may download model)
# from hue_portal.core.reranker import rerank_documents
from hue_portal.chatbot.llm_integration import get_llm_generator
from hue_portal.chatbot.structured_legal import format_structured_legal_answer
from hue_portal.chatbot.context_manager import ConversationContext
from hue_portal.chatbot.router import DOCUMENT_CODE_PATTERNS
from hue_portal.core.query_rewriter import get_query_rewriter
from hue_portal.core.pure_semantic_search import pure_semantic_search, parallel_vector_search
logger = logging.getLogger(__name__)
class SlowPathHandler:
"""Handle Slow Path queries with full RAG pipeline."""
def __init__(self):
self.chatbot = get_chatbot()
self.llm_generator = get_llm_generator()
# Thread pool for parallel search (max 2 workers to avoid overwhelming DB)
self._executor = ThreadPoolExecutor(max_workers=2, thread_name_prefix="parallel_search")
# Cache for prefetched results by session_id (in-memory fallback)
self._prefetched_cache: Dict[str, Dict[str, Any]] = {}
self._cache_lock = threading.Lock()
# Redis cache for prefetch results
self.redis_cache = get_redis_cache()
# Prefetch cache TTL (30 minutes default)
self.prefetch_cache_ttl = int(os.environ.get("CACHE_PREFETCH_TTL", "1800"))
def handle(
self,
query: str,
intent: str,
session_id: Optional[str] = None,
selected_document_code: Optional[str] = None,
) -> Dict[str, Any]:
"""
Full RAG pipeline:
1. Search (hybrid: BM25 + vector)
2. Retrieve top 20 documents
3. LLM generation with structured output (for legal queries)
4. Guardrails validation
5. Retry up to 3 times if needed
Args:
query: User query.
intent: Detected intent.
session_id: Optional session ID for context.
selected_document_code: Selected document code from wizard.
Returns:
Response dict with message, intent, results, etc.
"""
query = query.strip()
selected_document_code_normalized = (
selected_document_code.strip().upper() if selected_document_code else None
)
# Handle greetings
if intent == "greeting":
query_lower = query.lower().strip()
query_words = query_lower.split()
is_simple_greeting = (
len(query_words) <= 3 and
any(greeting in query_lower for greeting in ["xin chào", "chào", "hello", "hi"]) and
not any(kw in query_lower for kw in ["phạt", "mức phạt", "vi phạm", "thủ tục", "hồ sơ", "địa chỉ", "công an", "cảnh báo"])
)
if is_simple_greeting:
return {
"message": RESPONSE_TEMPLATES["greeting"],
"intent": "greeting",
"results": [],
"count": 0,
"_source": "slow_path"
}
# Wizard / option-first cho mọi câu hỏi pháp lý chung:
# Nếu:
# - intent là search_legal
# - chưa có selected_document_code trong session
# - trong câu hỏi không ghi rõ mã văn bản
# Thì: luôn trả về payload options để người dùng chọn văn bản trước,
# chưa generate câu trả lời chi tiết.
has_explicit_code = self._has_explicit_document_code_in_query(query)
logger.info(
"[WIZARD] Checking wizard conditions - intent=%s, selected_code=%s, has_explicit_code=%s, query='%s'",
intent,
selected_document_code_normalized,
has_explicit_code,
query[:50],
)
if (
intent == "search_legal"
and not selected_document_code_normalized
and not has_explicit_code
):
logger.info("[QUERY_REWRITE] ✅ Wizard conditions met, using Query Rewrite Strategy")
# Query Rewrite Strategy: Rewrite query into 3-5 optimized legal queries
query_rewriter = get_query_rewriter(self.llm_generator)
# Get conversation context for query rewriting
context = None
if session_id:
try:
recent_messages = ConversationContext.get_recent_messages(session_id, limit=5)
context = [
{"role": msg.role, "content": msg.content}
for msg in recent_messages
]
except Exception as exc:
logger.warning("[QUERY_REWRITE] Failed to load context: %s", exc)
# Rewrite query into 3-5 queries
rewritten_queries = query_rewriter.rewrite_query(
query,
context=context,
max_queries=5,
min_queries=3
)
if not rewritten_queries:
# Fallback to original query if rewrite fails
rewritten_queries = [query]
logger.info(
"[QUERY_REWRITE] Rewrote query into %d queries: %s",
len(rewritten_queries),
rewritten_queries[:3]
)
# Parallel vector search with multiple queries
try:
from hue_portal.core.models import LegalSection
# Search all legal sections (no document filter yet)
qs = LegalSection.objects.all()
text_fields = ["section_title", "section_code", "content"]
# Use parallel vector search
search_results = parallel_vector_search(
rewritten_queries,
qs,
top_k_per_query=5,
final_top_k=7,
text_fields=text_fields
)
# Extract unique document codes from results
doc_codes_seen: Set[str] = set()
document_options: List[Dict[str, Any]] = []
for section, score in search_results:
doc = getattr(section, "document", None)
if not doc:
continue
doc_code = getattr(doc, "code", "").upper()
if not doc_code or doc_code in doc_codes_seen:
continue
doc_codes_seen.add(doc_code)
# Get document metadata
doc_title = getattr(doc, "title", "") or doc_code
doc_summary = getattr(doc, "summary", "") or ""
if not doc_summary:
metadata = getattr(doc, "metadata", {}) or {}
if isinstance(metadata, dict):
doc_summary = metadata.get("summary", "")
document_options.append({
"code": doc_code,
"title": doc_title,
"summary": doc_summary,
"score": float(score),
"doc_type": getattr(doc, "doc_type", "") or "",
})
# Limit to top 5 documents
if len(document_options) >= 5:
break
# If no documents found, use canonical fallback
if not document_options:
logger.warning("[QUERY_REWRITE] No documents found, using canonical fallback")
canonical_candidates = [
{
"code": "264-QD-TW",
"title": "Quyết định 264-QĐ/TW về kỷ luật đảng viên",
"summary": "",
"doc_type": "",
},
{
"code": "QD-69-TW",
"title": "Quy định 69-QĐ/TW về kỷ luật tổ chức đảng, đảng viên",
"summary": "",
"doc_type": "",
},
{
"code": "TT-02-CAND",
"title": "Thông tư 02/2021/TT-BCA về điều lệnh CAND",
"summary": "",
"doc_type": "",
},
]
clarification_payload = self._build_clarification_payload(
query, canonical_candidates
)
if clarification_payload:
clarification_payload.setdefault("intent", intent)
clarification_payload.setdefault("_source", "clarification")
clarification_payload.setdefault("routing", "clarification")
clarification_payload.setdefault("confidence", 0.3)
return clarification_payload
# Build options from search results
options = [
{
"code": opt["code"],
"title": opt["title"],
"reason": opt.get("summary") or f"Độ liên quan: {opt['score']:.2f}",
}
for opt in document_options
]
# Add "Khác" option
if not any(opt.get("code") == "__other__" for opt in options):
options.append({
"code": "__other__",
"title": "Khác",
"reason": "Tôi muốn hỏi văn bản hoặc chủ đề pháp luật khác.",
})
message = (
"Tôi đã tìm thấy các văn bản pháp luật liên quan đến câu hỏi của bạn.\n\n"
"Bạn hãy chọn văn bản muốn tra cứu để tôi trả lời chi tiết hơn:"
)
logger.info(
"[QUERY_REWRITE] ✅ Found %d documents using Query Rewrite Strategy",
len(document_options)
)
return {
"type": "options",
"wizard_stage": "choose_document",
"message": message,
"options": options,
"clarification": {
"message": message,
"options": options,
},
"results": [],
"count": 0,
"intent": intent,
"_source": "query_rewrite",
"routing": "query_rewrite",
"confidence": 0.95, # High confidence with Query Rewrite Strategy
}
except Exception as exc:
logger.error(
"[QUERY_REWRITE] Error in Query Rewrite Strategy: %s, falling back to LLM suggestions",
exc,
exc_info=True
)
# Fallback to original LLM-based clarification
canonical_candidates: List[Dict[str, Any]] = []
try:
canonical_docs = list(
LegalDocument.objects.filter(
code__in=["264-QD-TW", "QD-69-TW", "TT-02-CAND"]
)
)
for doc in canonical_docs:
summary = getattr(doc, "summary", "") or ""
metadata = getattr(doc, "metadata", {}) or {}
if not summary and isinstance(metadata, dict):
summary = metadata.get("summary", "")
canonical_candidates.append(
{
"code": doc.code,
"title": getattr(doc, "title", "") or doc.code,
"summary": summary,
"doc_type": getattr(doc, "doc_type", "") or "",
"section_title": "",
}
)
except Exception as e:
logger.warning("[CLARIFICATION] Canonical documents lookup failed: %s", e)
if not canonical_candidates:
canonical_candidates = [
{
"code": "264-QD-TW",
"title": "Quyết định 264-QĐ/TW về kỷ luật đảng viên",
"summary": "",
"doc_type": "",
"section_title": "",
},
{
"code": "QD-69-TW",
"title": "Quy định 69-QĐ/TW về kỷ luật tổ chức đảng, đảng viên",
"summary": "",
"doc_type": "",
"section_title": "",
},
{
"code": "TT-02-CAND",
"title": "Thông tư 02/2021/TT-BCA về điều lệnh CAND",
"summary": "",
"doc_type": "",
"section_title": "",
},
]
clarification_payload = self._build_clarification_payload(
query, canonical_candidates
)
if clarification_payload:
clarification_payload.setdefault("intent", intent)
clarification_payload.setdefault("_source", "clarification_fallback")
clarification_payload.setdefault("routing", "clarification")
clarification_payload.setdefault("confidence", 0.3)
return clarification_payload
# Search based on intent - retrieve top-15 for reranking (balance speed and RAM)
search_result = self._search_by_intent(
intent,
query,
limit=15,
preferred_document_code=selected_document_code_normalized,
) # Balance: 15 for good recall, not too slow
# Fast path for high-confidence legal queries (skip for complex queries)
fast_path_response = None
if intent == "search_legal" and not self._is_complex_query(query):
fast_path_response = self._maybe_fast_path_response(search_result["results"], query)
if fast_path_response:
fast_path_response["intent"] = intent
fast_path_response["_source"] = "fast_path"
return fast_path_response
# Rerank results - DISABLED for speed (can enable via ENABLE_RERANKER env var)
# Reranker adds 1-3 seconds delay, skip for faster responses
enable_reranker = os.environ.get("ENABLE_RERANKER", "false").lower() == "true"
if intent == "search_legal" and enable_reranker:
try:
# Lazy import to avoid blocking startup (FlagEmbedding may download model)
from hue_portal.core.reranker import rerank_documents
legal_results = [r for r in search_result["results"] if r.get("type") == "legal"]
if len(legal_results) > 0:
# Rerank to top-4 (balance speed and context quality)
top_k = min(4, len(legal_results))
reranked = rerank_documents(query, legal_results, top_k=top_k)
# Update search_result with reranked results (keep non-legal results)
non_legal = [r for r in search_result["results"] if r.get("type") != "legal"]
search_result["results"] = reranked + non_legal
search_result["count"] = len(search_result["results"])
logger.info(
"[RERANKER] Reranked %d legal results to top-%d for query: %s",
len(legal_results),
top_k,
query[:50]
)
except Exception as e:
logger.warning("[RERANKER] Reranking failed: %s, using original results", e)
elif intent == "search_legal":
# Skip reranking for speed - just use top results by score
logger.debug("[RERANKER] Skipped reranking for speed (ENABLE_RERANKER=false)")
# BƯỚC 1: Bypass LLM khi có results tốt (tránh context overflow + tăng tốc 30-40%)
# Chỉ áp dụng cho legal queries có results với score cao
if intent == "search_legal" and search_result["count"] > 0:
top_result = search_result["results"][0]
top_score = top_result.get("score", 0.0) or 0.0
top_data = top_result.get("data", {})
doc_code = (top_data.get("document_code") or "").upper()
content = top_data.get("content", "") or top_data.get("excerpt", "")
# Bypass LLM nếu:
# 1. Có document code (TT-02-CAND, etc.) và content đủ dài
# 2. Score >= 0.4 (giảm threshold để dễ trigger hơn)
# 3. Hoặc có keywords quan trọng (%, hạ bậc, thi đua, tỷ lệ) với score >= 0.3
should_bypass = False
query_lower = query.lower()
has_keywords = any(kw in query_lower for kw in ["%", "phần trăm", "tỷ lệ", "12%", "20%", "10%", "hạ bậc", "thi đua", "xếp loại", "vi phạm", "cán bộ"])
# Điều kiện bypass dễ hơn: có doc_code + content đủ dài + score hợp lý
if doc_code and len(content) > 100:
if top_score >= 0.4:
should_bypass = True
elif has_keywords and top_score >= 0.3:
should_bypass = True
# Hoặc có keywords quan trọng + content đủ dài
elif has_keywords and len(content) > 100 and top_score >= 0.3:
should_bypass = True
if should_bypass:
# Template trả thẳng cho query về tỷ lệ vi phạm + hạ bậc thi đua
if any(kw in query_lower for kw in ["12%", "tỷ lệ", "phần trăm", "hạ bậc", "thi đua"]):
# Query về tỷ lệ vi phạm và hạ bậc thi đua
section_code = top_data.get("section_code", "")
section_title = top_data.get("section_title", "")
doc_title = top_data.get("document_title", "văn bản pháp luật")
# Trích xuất đoạn liên quan từ content
content_preview = content[:600] + "..." if len(content) > 600 else content
answer = (
f"Theo {doc_title} ({doc_code}):\n\n"
f"{section_code}: {section_title}\n\n"
f"{content_preview}\n\n"
f"Nguồn: {section_code}, {doc_title} ({doc_code})"
)
else:
# Template chung cho legal queries
section_code = top_data.get("section_code", "Điều liên quan")
section_title = top_data.get("section_title", "")
doc_title = top_data.get("document_title", "văn bản pháp luật")
content_preview = content[:500] + "..." if len(content) > 500 else content
answer = (
f"Kết quả chính xác nhất:\n\n"
f"- Văn bản: {doc_title} ({doc_code})\n"
f"- Điều khoản: {section_code}" + (f" – {section_title}" if section_title else "") + "\n\n"
f"{content_preview}\n\n"
f"Nguồn: {section_code}, {doc_title} ({doc_code})"
)
logger.info(
"[BYPASS_LLM] Using raw template for legal query (score=%.3f, doc=%s, query='%s')",
top_score,
doc_code,
query[:50]
)
return {
"message": answer,
"intent": intent,
"confidence": min(0.99, top_score + 0.05),
"results": search_result["results"][:3],
"count": min(3, search_result["count"]),
"_source": "raw_template",
"routing": "raw_template"
}
# Get conversation context if available
context = None
context_summary = ""
if session_id:
try:
recent_messages = ConversationContext.get_recent_messages(session_id, limit=5)
context = [
{
"role": msg.role,
"content": msg.content,
"intent": msg.intent
}
for msg in recent_messages
]
# Tạo context summary để đưa vào prompt nếu có conversation history
if len(context) > 1:
context_parts = []
for msg in reversed(context[-3:]): # Chỉ lấy 3 message gần nhất
if msg["role"] == "user":
context_parts.append(f"Người dùng: {msg['content'][:100]}")
elif msg["role"] == "bot":
context_parts.append(f"Bot: {msg['content'][:100]}")
if context_parts:
context_summary = "\n\nNgữ cảnh cuộc trò chuyện trước đó:\n" + "\n".join(context_parts)
except Exception as exc:
logger.warning("[CONTEXT] Failed to load conversation context: %s", exc)
# Enhance query with context if available
enhanced_query = query
if context_summary:
enhanced_query = query + context_summary
# Generate response message using LLM if available and we have documents
message = None
if self.llm_generator and search_result["count"] > 0:
# For legal queries, use structured output (top-4 for good context and speed)
if intent == "search_legal" and search_result["results"]:
legal_docs = [r["data"] for r in search_result["results"] if r.get("type") == "legal"][:4] # Top-4 for balance
if legal_docs:
structured_answer = self.llm_generator.generate_structured_legal_answer(
enhanced_query, # Dùng enhanced_query có context
legal_docs,
prefill_summary=None
)
if structured_answer:
message = format_structured_legal_answer(structured_answer)
# For other intents or if structured failed, use regular LLM generation
if not message:
documents = [r["data"] for r in search_result["results"][:4]] # Top-4 for balance
message = self.llm_generator.generate_answer(
enhanced_query, # Dùng enhanced_query có context
context=context,
documents=documents
)
# Fallback to template if LLM not available or failed
if not message:
if search_result["count"] > 0:
# Đặc biệt xử lý legal queries: format tốt hơn thay vì dùng template chung
if intent == "search_legal" and search_result["results"]:
top_result = search_result["results"][0]
top_data = top_result.get("data", {})
doc_code = top_data.get("document_code", "")
doc_title = top_data.get("document_title", "văn bản pháp luật")
section_code = top_data.get("section_code", "")
section_title = top_data.get("section_title", "")
content = top_data.get("content", "") or top_data.get("excerpt", "")
if content and len(content) > 50:
content_preview = content[:400] + "..." if len(content) > 400 else content
message = (
f"Tôi tìm thấy {search_result['count']} điều khoản liên quan đến '{query}':\n\n"
f"**{section_code}**: {section_title or 'Nội dung liên quan'}\n\n"
f"{content_preview}\n\n"
f"Nguồn: {doc_title}" + (f" ({doc_code})" if doc_code else "")
)
else:
template = RESPONSE_TEMPLATES.get(intent, RESPONSE_TEMPLATES["general_query"])
message = template.format(
count=search_result["count"],
query=query
)
else:
template = RESPONSE_TEMPLATES.get(intent, RESPONSE_TEMPLATES["general_query"])
message = template.format(
count=search_result["count"],
query=query
)
else:
message = RESPONSE_TEMPLATES["no_results"].format(query=query)
# Limit results to top 5 for response
results = search_result["results"][:5]
response = {
"message": message,
"intent": intent,
"confidence": 0.95, # High confidence for Slow Path (thorough search)
"results": results,
"count": len(results),
"_source": "slow_path"
}
return response
def _maybe_request_clarification(
self,
query: str,
search_result: Dict[str, Any],
selected_document_code: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
"""
Quyết định có nên hỏi người dùng chọn văn bản (wizard step: choose_document).
Nguyên tắc option-first:
- Nếu user CHƯA chọn văn bản trong session
- Và trong câu hỏi KHÔNG ghi rõ mã văn bản
- Và search có trả về kết quả
=> Ưu tiên trả về danh sách văn bản để người dùng chọn, thay vì trả lời thẳng.
"""
if selected_document_code:
return None
if not search_result or search_result.get("count", 0) == 0:
return None
# Nếu người dùng đã ghi rõ mã văn bản trong câu hỏi (ví dụ: 264/QĐ-TW)
# thì không cần hỏi lại – ưu tiên dùng chính mã đó.
if self._has_explicit_document_code_in_query(query):
return None
# Ưu tiên dùng danh sách văn bản "chuẩn" (canonical) nếu có trong DB.
# Tuy nhiên, để đảm bảo wizard luôn hoạt động (option-first),
# nếu DB chưa đủ dữ liệu thì vẫn build danh sách tĩnh fallback.
fallback_candidates: List[Dict[str, Any]] = []
try:
fallback_docs = list(
LegalDocument.objects.filter(
code__in=["264-QD-TW", "QD-69-TW", "TT-02-CAND"]
)
)
for doc in fallback_docs:
summary = getattr(doc, "summary", "") or ""
metadata = getattr(doc, "metadata", {}) or {}
if not summary and isinstance(metadata, dict):
summary = metadata.get("summary", "")
fallback_candidates.append(
{
"code": doc.code,
"title": getattr(doc, "title", "") or doc.code,
"summary": summary,
"doc_type": getattr(doc, "doc_type", "") or "",
"section_title": "",
}
)
except Exception as exc:
logger.warning(
"[CLARIFICATION] Fallback documents lookup failed, using static list: %s",
exc,
)
# Nếu DB chưa có đủ thông tin, luôn cung cấp danh sách tĩnh tối thiểu,
# để wizard option-first vẫn hoạt động.
if not fallback_candidates:
fallback_candidates = [
{
"code": "264-QD-TW",
"title": "Quyết định 264-QĐ/TW về kỷ luật đảng viên",
"summary": "",
"doc_type": "",
"section_title": "",
},
{
"code": "QD-69-TW",
"title": "Quy định 69-QĐ/TW về kỷ luật tổ chức đảng, đảng viên",
"summary": "",
"doc_type": "",
"section_title": "",
},
{
"code": "TT-02-CAND",
"title": "Thông tư 02/2021/TT-BCA về điều lệnh CAND",
"summary": "",
"doc_type": "",
"section_title": "",
},
]
payload = self._build_clarification_payload(query, fallback_candidates)
if payload:
logger.info(
"[CLARIFICATION] Requesting user choice among canonical documents: %s",
[c["code"] for c in fallback_candidates],
)
return payload
def _has_explicit_document_code_in_query(self, query: str) -> bool:
"""
Check if the raw query string explicitly contains a known document code
pattern (e.g. '264/QĐ-TW', 'QD-69-TW', 'TT-02-CAND').
Khác với _detect_document_code (dò toàn bộ bảng LegalDocument theo token),
hàm này chỉ dựa trên các regex cố định để tránh over-detect cho câu hỏi
chung chung như 'xử lí kỷ luật đảng viên thế nào'.
"""
normalized = self._remove_accents(query).upper()
if not normalized:
return False
for pattern in DOCUMENT_CODE_PATTERNS:
try:
if re.search(pattern, normalized):
return True
except re.error:
# Nếu pattern không hợp lệ thì bỏ qua, không chặn flow
continue
return False
def _collect_document_candidates(
self,
legal_results: List[Dict[str, Any]],
limit: int = 4,
) -> List[Dict[str, Any]]:
"""Collect unique document candidates from legal results."""
ordered_codes: List[str] = []
seen: set[str] = set()
for result in legal_results:
data = result.get("data", {})
code = (data.get("document_code") or "").strip()
if not code:
continue
upper = code.upper()
if upper in seen:
continue
ordered_codes.append(code)
seen.add(upper)
if len(ordered_codes) >= limit:
break
if len(ordered_codes) < 2:
return []
try:
documents = {
doc.code.upper(): doc
for doc in LegalDocument.objects.filter(code__in=ordered_codes)
}
except Exception as exc:
logger.warning("[CLARIFICATION] Unable to load documents for candidates: %s", exc)
documents = {}
candidates: List[Dict[str, Any]] = []
for code in ordered_codes:
upper = code.upper()
doc_obj = documents.get(upper)
section = next(
(
res
for res in legal_results
if (res.get("data", {}).get("document_code") or "").strip().upper() == upper
),
None,
)
data = section.get("data", {}) if section else {}
summary = ""
if doc_obj:
summary = doc_obj.summary or ""
if not summary and isinstance(doc_obj.metadata, dict):
summary = doc_obj.metadata.get("summary", "")
if not summary:
summary = data.get("excerpt") or data.get("content", "")[:200]
candidates.append(
{
"code": code,
"title": data.get("document_title") or (doc_obj.title if doc_obj else code),
"summary": summary,
"doc_type": doc_obj.doc_type if doc_obj else "",
"section_title": data.get("section_title") or "",
}
)
return candidates
def _build_clarification_payload(
self,
query: str,
candidates: List[Dict[str, Any]],
) -> Optional[Dict[str, Any]]:
if not candidates:
return None
default_message = (
"Tôi tìm thấy một số văn bản có thể phù hợp. "
"Bạn vui lòng chọn văn bản muốn tra cứu để tôi trả lời chính xác hơn."
)
llm_payload = self._call_clarification_llm(query, candidates)
message = default_message
options: List[Dict[str, Any]] = []
# Ưu tiên dùng gợi ý từ LLM, nhưng phải luôn đảm bảo có options fallback
if llm_payload:
message = llm_payload.get("message") or default_message
raw_options = llm_payload.get("options")
if isinstance(raw_options, list):
options = [
{
"code": (opt.get("code") or candidate.get("code", "")).upper(),
"title": opt.get("title") or opt.get("document_title") or candidate.get("title", ""),
"reason": opt.get("reason")
or opt.get("summary")
or candidate.get("summary")
or candidate.get("section_title")
or "",
}
for opt, candidate in zip(
raw_options,
candidates[: len(raw_options)],
)
if (opt.get("code") or candidate.get("code"))
and (opt.get("title") or opt.get("document_title") or candidate.get("title"))
]
# Nếu LLM không trả về options hợp lệ → fallback build từ candidates
if not options:
options = [
{
"code": candidate["code"].upper(),
"title": candidate["title"],
"reason": candidate.get("summary") or candidate.get("section_title") or "",
}
for candidate in candidates[:3]
]
if not any(opt.get("code") == "__other__" for opt in options):
options.append(
{
"code": "__other__",
"title": "Khác",
"reason": "Tôi muốn hỏi văn bản hoặc chủ đề khác",
}
)
return {
# Wizard-style payload: ưu tiên dạng options cho UI
"type": "options",
"wizard_stage": "choose_document",
"message": message,
"options": options,
"clarification": {
"message": message,
"options": options,
},
"results": [],
"count": 0,
}
def _call_clarification_llm(
self,
query: str,
candidates: List[Dict[str, Any]],
) -> Optional[Dict[str, Any]]:
if not self.llm_generator:
return None
try:
return self.llm_generator.suggest_clarification_topics(
query,
candidates,
max_options=3,
)
except Exception as exc:
logger.warning("[CLARIFICATION] LLM suggestion failed: %s", exc)
return None
def _parallel_search_prepare(
self,
document_code: str,
keywords: List[str],
session_id: Optional[str] = None,
) -> None:
"""
Trigger parallel search in background when user selects a document option.
Stores results in cache for Stage 2 (choose topic).
Args:
document_code: Selected document code
keywords: Keywords extracted from query/options
session_id: Session ID for caching results
"""
if not session_id:
return
def _search_task():
try:
logger.info(
"[PARALLEL_SEARCH] Starting background search for doc=%s, keywords=%s",
document_code,
keywords[:5],
)
# Check Redis cache first
cache_key = f"prefetch:{document_code.upper()}:{hashlib.sha256(' '.join(keywords).encode()).hexdigest()[:16]}"
cached_result = None
if self.redis_cache and self.redis_cache.is_available():
cached_result = self.redis_cache.get(cache_key)
if cached_result:
logger.info(
"[PARALLEL_SEARCH] ✅ Cache hit for doc=%s",
document_code
)
# Store in in-memory cache too
with self._cache_lock:
if session_id not in self._prefetched_cache:
self._prefetched_cache[session_id] = {}
self._prefetched_cache[session_id]["document_results"] = cached_result
return
# Search in the selected document
query_text = " ".join(keywords) if keywords else ""
search_result = self._search_by_intent(
intent="search_legal",
query=query_text,
limit=20, # Get more results for topic options
preferred_document_code=document_code.upper(),
)
# Prepare cache data
cache_data = {
"document_code": document_code,
"results": search_result.get("results", []),
"count": search_result.get("count", 0),
"timestamp": time.time(),
}
# Store in Redis cache
if self.redis_cache and self.redis_cache.is_available():
self.redis_cache.set(cache_key, cache_data, ttl_seconds=self.prefetch_cache_ttl)
logger.debug(
"[PARALLEL_SEARCH] Cached prefetch results (TTL: %ds)",
self.prefetch_cache_ttl
)
# Store in in-memory cache (fallback)
with self._cache_lock:
if session_id not in self._prefetched_cache:
self._prefetched_cache[session_id] = {}
self._prefetched_cache[session_id]["document_results"] = cache_data
logger.info(
"[PARALLEL_SEARCH] Completed background search for doc=%s, found %d results",
document_code,
search_result.get("count", 0),
)
except Exception as exc:
logger.warning("[PARALLEL_SEARCH] Background search failed: %s", exc)
# Submit to thread pool
self._executor.submit(_search_task)
def _parallel_search_topic(
self,
document_code: str,
topic_keywords: List[str],
session_id: Optional[str] = None,
) -> None:
"""
Trigger parallel search when user selects a topic option.
Stores results for final answer generation.
Args:
document_code: Selected document code
topic_keywords: Keywords from selected topic
session_id: Session ID for caching results
"""
if not session_id:
return
def _search_task():
try:
logger.info(
"[PARALLEL_SEARCH] Starting topic search for doc=%s, keywords=%s",
document_code,
topic_keywords[:5],
)
# Search with topic keywords
query_text = " ".join(topic_keywords) if topic_keywords else ""
search_result = self._search_by_intent(
intent="search_legal",
query=query_text,
limit=10,
preferred_document_code=document_code.upper(),
)
# Store in cache
with self._cache_lock:
if session_id not in self._prefetched_cache:
self._prefetched_cache[session_id] = {}
self._prefetched_cache[session_id]["topic_results"] = {
"document_code": document_code,
"keywords": topic_keywords,
"results": search_result.get("results", []),
"count": search_result.get("count", 0),
"timestamp": time.time(),
}
logger.info(
"[PARALLEL_SEARCH] Completed topic search, found %d results",
search_result.get("count", 0),
)
except Exception as exc:
logger.warning("[PARALLEL_SEARCH] Topic search failed: %s", exc)
# Submit to thread pool
self._executor.submit(_search_task)
def _get_prefetched_results(
self,
session_id: Optional[str],
result_type: str = "document_results",
) -> Optional[Dict[str, Any]]:
"""
Get prefetched search results from cache.
Args:
session_id: Session ID
result_type: "document_results" or "topic_results"
Returns:
Cached results dict or None
"""
if not session_id:
return None
with self._cache_lock:
cache_entry = self._prefetched_cache.get(session_id)
if not cache_entry:
return None
results = cache_entry.get(result_type)
if not results:
return None
# Check if results are still fresh (within 5 minutes)
timestamp = results.get("timestamp", 0)
if time.time() - timestamp > 300: # 5 minutes
logger.debug("[PARALLEL_SEARCH] Prefetched results expired for session=%s", session_id)
return None
return results
def _clear_prefetched_cache(self, session_id: Optional[str]) -> None:
"""Clear prefetched cache for a session."""
if not session_id:
return
with self._cache_lock:
if session_id in self._prefetched_cache:
del self._prefetched_cache[session_id]
logger.debug("[PARALLEL_SEARCH] Cleared cache for session=%s", session_id)
def _search_by_intent(
self,
intent: str,
query: str,
limit: int = 5,
preferred_document_code: Optional[str] = None,
) -> Dict[str, Any]:
"""Search based on classified intent. Reduced limit from 20 to 5 for faster inference on free tier."""
# Use original query for better matching
keywords = query.strip()
extracted = " ".join(self.chatbot.extract_keywords(query))
if extracted and len(extracted) > 2:
keywords = f"{keywords} {extracted}"
results = []
if intent == "search_fine":
qs = Fine.objects.all()
text_fields = ["name", "code", "article", "decree", "remedial"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "fine", "data": {
"id": f.id,
"name": f.name,
"code": f.code,
"min_fine": float(f.min_fine) if f.min_fine else None,
"max_fine": float(f.max_fine) if f.max_fine else None,
"article": f.article,
"decree": f.decree,
}} for f in search_results]
elif intent == "search_procedure":
qs = Procedure.objects.all()
text_fields = ["title", "domain", "conditions", "dossier"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "procedure", "data": {
"id": p.id,
"title": p.title,
"domain": p.domain,
"level": p.level,
}} for p in search_results]
elif intent == "search_office":
qs = Office.objects.all()
text_fields = ["unit_name", "address", "district", "service_scope"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "office", "data": {
"id": o.id,
"unit_name": o.unit_name,
"address": o.address,
"district": o.district,
"phone": o.phone,
"working_hours": o.working_hours,
}} for o in search_results]
elif intent == "search_advisory":
qs = Advisory.objects.all()
text_fields = ["title", "summary"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "advisory", "data": {
"id": a.id,
"title": a.title,
"summary": a.summary,
}} for a in search_results]
elif intent == "search_legal":
qs = LegalSection.objects.all()
text_fields = ["section_title", "section_code", "content"]
detected_code = self._detect_document_code(query)
effective_code = preferred_document_code or detected_code
filtered = False
if effective_code:
filtered_qs = qs.filter(document__code__iexact=effective_code)
if filtered_qs.exists():
qs = filtered_qs
filtered = True
logger.info(
"[SEARCH] Prefiltering legal sections for document code %s (query='%s')",
effective_code,
query,
)
else:
logger.info(
"[SEARCH] Document code %s detected but no sections found locally, falling back to full corpus",
effective_code,
)
else:
logger.debug("[SEARCH] No document code detected for query: %s", query)
# Use pure semantic search (100% vector, no BM25)
search_results = pure_semantic_search(
[keywords],
qs,
top_k=limit, # limit=15 for reranking, will be reduced to 4
text_fields=text_fields
)
results = self._format_legal_results(search_results, detected_code, query=query)
logger.info(
"[SEARCH] Legal intent processed (query='%s', code=%s, filtered=%s, results=%d)",
query,
detected_code or "None",
filtered,
len(results),
)
return {
"intent": intent,
"query": query,
"keywords": keywords,
"results": results,
"count": len(results),
"detected_code": detected_code,
}
def _should_save_to_golden(self, query: str, response: Dict) -> bool:
"""
Decide if response should be saved to golden dataset.
Criteria:
- High confidence (>0.95)
- Has results
- Response is complete and well-formed
- Not already in golden dataset
"""
try:
from hue_portal.core.models import GoldenQuery
# Check if already exists
query_normalized = self._normalize_query(query)
if GoldenQuery.objects.filter(query_normalized=query_normalized, is_active=True).exists():
return False
# Check criteria
has_results = response.get("count", 0) > 0
has_message = bool(response.get("message", "").strip())
confidence = response.get("confidence", 0.0)
# Only save if high quality
if has_results and has_message and confidence >= 0.95:
# Additional check: message should be substantial (not just template)
message = response.get("message", "")
if len(message) > 50: # Substantial response
return True
return False
except Exception as e:
logger.warning(f"Error checking if should save to golden: {e}")
return False
def _normalize_query(self, query: str) -> str:
"""Normalize query for matching."""
normalized = query.lower().strip()
# Remove accents
normalized = unicodedata.normalize("NFD", normalized)
normalized = "".join(ch for ch in normalized if unicodedata.category(ch) != "Mn")
# Remove extra spaces
normalized = re.sub(r'\s+', ' ', normalized).strip()
return normalized
def _detect_document_code(self, query: str) -> Optional[str]:
"""Detect known document code mentioned in the query."""
normalized_query = self._remove_accents(query).upper()
if not normalized_query:
return None
try:
codes = LegalDocument.objects.values_list("code", flat=True)
except Exception as exc:
logger.debug("Unable to fetch document codes: %s", exc)
return None
for code in codes:
if not code:
continue
tokens = self._split_code_tokens(code)
if tokens and all(token in normalized_query for token in tokens):
logger.info("[SEARCH] Detected document code %s in query", code)
return code
return None
def _split_code_tokens(self, code: str) -> List[str]:
"""Split a document code into uppercase accentless tokens."""
normalized = self._remove_accents(code).upper()
return [tok for tok in re.split(r"[-/\s]+", normalized) if tok]
def _remove_accents(self, text: str) -> str:
if not text:
return ""
normalized = unicodedata.normalize("NFD", text)
return "".join(ch for ch in normalized if unicodedata.category(ch) != "Mn")
def _format_legal_results(
self,
search_results: List[Any],
detected_code: Optional[str],
query: Optional[str] = None,
) -> List[Dict[str, Any]]:
"""Build legal result payload and apply ordering/boosting based on doc code and keywords."""
entries: List[Dict[str, Any]] = []
upper_detected = detected_code.upper() if detected_code else None
# Keywords that indicate important legal concepts (boost score if found)
important_keywords = []
if query:
query_lower = query.lower()
# Keywords for percentage/threshold queries
if any(kw in query_lower for kw in ["%", "phần trăm", "tỷ lệ", "12%", "20%", "10%"]):
important_keywords.extend(["%", "phần trăm", "tỷ lệ", "12", "20", "10"])
# Keywords for ranking/demotion queries
if any(kw in query_lower for kw in ["hạ bậc", "thi đua", "xếp loại", "đánh giá"]):
important_keywords.extend(["hạ bậc", "thi đua", "xếp loại", "đánh giá"])
for ls in search_results:
doc = ls.document
doc_code = doc.code if doc else None
score = getattr(ls, "_ml_score", getattr(ls, "rank", 0.0)) or 0.0
# Boost score if content contains important keywords
content_text = (ls.content or ls.section_title or "").lower()
keyword_boost = 0.0
if important_keywords and content_text:
for kw in important_keywords:
if kw.lower() in content_text:
keyword_boost += 0.15 # Boost 0.15 per keyword match
logger.debug(
"[BOOST] Keyword '%s' found in section %s, boosting score",
kw,
ls.section_code,
)
entries.append(
{
"type": "legal",
"score": float(score) + keyword_boost,
"data": {
"id": ls.id,
"section_code": ls.section_code,
"section_title": ls.section_title,
"content": ls.content[:500] if ls.content else "",
"excerpt": ls.excerpt,
"document_code": doc_code,
"document_title": doc.title if doc else None,
"page_start": ls.page_start,
"page_end": ls.page_end,
},
}
)
if upper_detected:
exact_matches = [
r for r in entries if (r["data"].get("document_code") or "").upper() == upper_detected
]
if exact_matches:
others = [r for r in entries if r not in exact_matches]
entries = exact_matches + others
else:
for entry in entries:
doc_code = (entry["data"].get("document_code") or "").upper()
if doc_code == upper_detected:
entry["score"] = (entry.get("score") or 0.1) * 10
entries.sort(key=lambda r: r.get("score") or 0, reverse=True)
else:
# Sort by boosted score
entries.sort(key=lambda r: r.get("score") or 0, reverse=True)
return entries
def _is_complex_query(self, query: str) -> bool:
"""
Detect if query is complex and requires LLM reasoning (not suitable for Fast Path).
Complex queries contain keywords like: %, bậc, thi đua, tỷ lệ, liên đới, tăng nặng, giảm nhẹ, đơn vị vi phạm
"""
if not query:
return False
query_lower = query.lower()
complex_keywords = [
"%", "phần trăm",
"bậc", "hạ bậc", "nâng bậc",
"thi đua", "xếp loại", "đánh giá",
"tỷ lệ", "tỉ lệ",
"liên đới", "liên quan",
"tăng nặng", "tăng nặng hình phạt",
"giảm nhẹ", "giảm nhẹ hình phạt",
"đơn vị vi phạm", "đơn vị có",
]
for keyword in complex_keywords:
if keyword in query_lower:
logger.info(
"[FAST_PATH] Complex query detected (keyword: '%s'), forcing Slow Path",
keyword,
)
return True
return False
def _maybe_fast_path_response(
self, results: List[Dict[str, Any]], query: Optional[str] = None
) -> Optional[Dict[str, Any]]:
"""Return fast-path response if results are confident enough."""
if not results:
return None
# Double-check: if query is complex, never use Fast Path
if query and self._is_complex_query(query):
return None
top_result = results[0]
top_score = top_result.get("score", 0.0) or 0.0
doc_code = (top_result.get("data", {}).get("document_code") or "").upper()
if top_score >= 0.88 and doc_code:
logger.info(
"[FAST_PATH] Top score hit (%.3f) for document %s", top_score, doc_code
)
message = self._format_fast_legal_message(top_result)
return {
"message": message,
"results": results[:3],
"count": min(3, len(results)),
"confidence": min(0.99, top_score + 0.05),
}
top_three = results[:3]
if len(top_three) >= 2:
doc_codes = [
(res.get("data", {}).get("document_code") or "").upper()
for res in top_three
if res.get("data", {}).get("document_code")
]
if doc_codes and len(set(doc_codes)) == 1:
logger.info(
"[FAST_PATH] Top-%d results share same document %s",
len(top_three),
doc_codes[0],
)
message = self._format_fast_legal_message(top_three[0])
return {
"message": message,
"results": top_three,
"count": len(top_three),
"confidence": min(0.97, (top_three[0].get("score") or 0.9) + 0.04),
}
return None
def _format_fast_legal_message(self, result: Dict[str, Any]) -> str:
"""Format a concise legal answer without LLM."""
data = result.get("data", {})
doc_title = data.get("document_title") or "văn bản pháp luật"
doc_code = data.get("document_code") or ""
section_code = data.get("section_code") or "Điều liên quan"
section_title = data.get("section_title") or ""
content = (data.get("content") or data.get("excerpt") or "").strip()
if len(content) > 400:
trimmed = content[:400].rsplit(" ", 1)[0]
content = f"{trimmed}..."
intro = "Kết quả chính xác nhất:"
lines = [intro]
if doc_title or doc_code:
lines.append(f"- Văn bản: {doc_title or 'văn bản pháp luật'}" + (f" ({doc_code})" if doc_code else ""))
section_label = section_code
if section_title:
section_label = f"{section_code} – {section_title}"
lines.append(f"- Điều khoản: {section_label}")
lines.append("")
lines.append(content)
citation_doc = doc_title or doc_code or "nguồn chính thức"
lines.append(f"\nNguồn: {section_label}, {citation_doc}.")
return "\n".join(lines)
|