File size: 48,388 Bytes
9600dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e9bf39
 
 
 
9600dd5
3755dbf
 
57234eb
 
 
 
 
 
 
 
 
 
 
 
9600dd5
 
73441d8
9600dd5
 
57234eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3755dbf
 
 
73441d8
9600dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57234eb
 
9600dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73441d8
 
 
 
 
 
 
 
 
 
9600dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3755dbf
 
9600dd5
73441d8
9600dd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
#!/usr/bin/env python3
"""
SAM 3 目标检测与分割演示的 Hugging Face Spaces 版本。

适配 Hugging Face Spaces 部署环境:
1. 直接从 Hugging Face Hub 下载模型和资源
2. 支持 ZeroGPU 或 CPU 推理
3. 无需本地上传额外文件

支持功能:
1. 文本提示分割
2. 单框/多框提示分割
3. 正框/负框交互式标注(Multi Box 模式下可切换绘制正框或负框)
"""

import os
import torch
import numpy as np
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import io
import random
from typing import List, Dict, Any, Tuple

# Hugging Face Hub 下载工具
from huggingface_hub import hf_hub_download, snapshot_download

# Hugging Face Spaces 环境检测
IS_HF_SPACES = os.environ.get("SPACE_ID") is not None

# 尝试导入 ImagePrompter,如果失败则使用标准 gr.Image
try:
    from gradio_image_prompter import ImagePrompter
    IMAGE_PROMPTER_AVAILABLE = True
except ImportError as e:
    print(f"ImagePrompter 不可用: {e}")
    IMAGE_PROMPTER_AVAILABLE = False

# 尝试导入 spaces 模块(用于 ZeroGPU)
try:
    import spaces
    SPACES_GPU_AVAILABLE = True
except ImportError:
    SPACES_GPU_AVAILABLE = False
    print("Hugging Face Spaces GPU 模块不可用,将使用标准推理")

# --- Hugging Face Hub 配置 ---
# SAM3 官方仓库:
#   - HuggingFace: https://huggingface.co/facebook/sam3
#   - GitHub: https://github.com/facebookresearch/sam3
SAM3_HF_REPO_ID = os.environ.get("SAM3_HF_REPO_ID", "facebook/sam3")

# 导入 sam3 库(通过 requirements.txt 从 GitHub 自动安装)
# requirements.txt 中配置: git+https://github.com/facebookresearch/sam3.git
SAM3_INSTALLED = False
sam3 = None
build_sam3_image_model = None
box_xywh_to_cxcywh = None
Sam3Processor = None
normalize_bbox = None
draw_box_on_image = None
plot_mask = None
plot_bbox = None
COLORS = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]  # 默认颜色
plot_results = None

try:
    import sam3
    from sam3 import build_sam3_image_model
    SAM3_INSTALLED = True
    print("✅ sam3 库已安装")
    
    # 尝试导入其他组件
    try:
        from sam3.model.box_ops import box_xywh_to_cxcywh
    except ImportError as e:
        print(f"⚠️ box_ops 导入失败: {e}")
        # 定义一个简单的替代函数
        def box_xywh_to_cxcywh(boxes):
            """将 XYWH 格式转换为 CXCYWH 格式"""
            x, y, w, h = boxes.unbind(-1)
            cx = x + w / 2
            cy = y + h / 2
            return torch.stack([cx, cy, w, h], dim=-1)
    
    try:
        from sam3.model.sam3_image_processor import Sam3Processor
    except ImportError as e:
        print(f"⚠️ Sam3Processor 导入失败: {e}")
        Sam3Processor = None
    
    try:
        from sam3.visualization_utils import normalize_bbox, draw_box_on_image, plot_mask, plot_bbox, COLORS, plot_results
    except ImportError as e:
        print(f"⚠️ visualization_utils 导入失败: {e}")
        # 定义简单的替代函数
        def normalize_bbox(boxes, width, height):
            """归一化边界框坐标"""
            if isinstance(boxes, torch.Tensor):
                normalized = boxes.clone()
                normalized[..., 0] /= width
                normalized[..., 1] /= height
                normalized[..., 2] /= width
                normalized[..., 3] /= height
                return normalized
            return boxes
        
        def plot_mask(mask, color=(1, 0, 0), alpha=0.5):
            """绘制掩码"""
            import matplotlib.pyplot as plt
            h, w = mask.shape[-2:]
            mask_image = mask.reshape(h, w, 1) * np.array(color).reshape(1, 1, -1)
            plt.imshow(mask_image, alpha=alpha)
        
        def plot_bbox(h, w, box, text="", box_format="XYXY", color=(1, 0, 0), relative_coords=False):
            """绘制边界框"""
            import matplotlib.pyplot as plt
            import matplotlib.patches as patches
            if isinstance(box, torch.Tensor):
                box = box.tolist()
            x0, y0, x1, y1 = box
            rect = patches.Rectangle((x0, y0), x1-x0, y1-y0, linewidth=2, edgecolor=color, facecolor='none')
            plt.gca().add_patch(rect)
            if text:
                plt.text(x0, y0, text, color=color, fontsize=8)
        
        COLORS = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)]
        plot_results = None
        draw_box_on_image = None

except ImportError as e:
    print(f"❌ sam3 库导入失败: {e}")
    print("请确保 requirements.txt 中包含: git+https://github.com/facebookresearch/sam3.git")


# --- 0. ImagePrompter 数据解析函数 ---

def draw_boxes_with_labels(
    image: Image.Image,
    xyxy_boxes: List[List[float]],
    box_labels: List[bool]
) -> Image.Image:
    """
    在图像上绘制带颜色和标签的框。
    
    Args:
        image: 原始 PIL 图像
        xyxy_boxes: 框坐标列表 [[x_min, y_min, x_max, y_max], ...]
        box_labels: 框标签列表 [True/False, ...],True=正框(绿色),False=负框(红色)
    
    Returns:
        带有彩色框和标签的图像
    """
    if image is None:
        return None
    
    # 复制图像以避免修改原图
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    
    # 尝试加载字体,如果失败则使用默认字体
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
    except:
        try:
            font = ImageFont.truetype("Arial.ttf", 16)
        except:
            font = ImageFont.load_default()
    
    for i, (box, label) in enumerate(zip(xyxy_boxes, box_labels)):
        x_min, y_min, x_max, y_max = [int(coord) for coord in box]
        
        # 正框用红色,负框用绿色
        if label:
            color = (255, 0, 0)  # 红色 - 正框
            label_text = f"Box {i}: True (正框)"
        else:
            color = (0, 255, 0)  # 绿色 - 负框
            label_text = f"Box {i}: False (负框)"
        
        # 绘制矩形框,线宽为3
        draw.rectangle([x_min, y_min, x_max, y_max], outline=color, width=3)
        
        # 绘制标签背景
        text_bbox = draw.textbbox((x_min, y_min - 20), label_text, font=font)
        # 确保标签在图像内
        text_y = max(0, y_min - 22)
        if text_y == 0:
            text_y = y_max + 2  # 如果顶部没空间,放到框下方
        
        text_bbox = draw.textbbox((x_min, text_y), label_text, font=font)
        draw.rectangle(text_bbox, fill=color)
        draw.text((x_min, text_y), label_text, fill="white", font=font)
    
    return img_draw


def process_imageprompter_data(
    data: Any, 
    box_mode_history: List[Tuple[int, str]] = None,
    verbose: bool = False
) -> Tuple[List[List[float]], List[bool]]:
    """
    处理 ImagePrompter 数据,提取框坐标 (XYXY 格式) 和对应的标签(正/负框)。
    
    ImagePrompter 返回格式:
    {'image': <PIL Image>, 'points': [[x1, y1, label1, x2, y2, label2], ...]}
    
    Args:
        data: ImagePrompter 返回的数据字典
        box_mode_history: 框模式切换历史列表,格式为 [(框索引, 模式), ...]
                         例如 [(0, "positive"), (2, "negative")] 表示第0个框开始是正框,第2个框开始是负框
                         如果为 None 或空,则所有框默认为正框
        verbose: 是否输出详细调试日志
    
    Returns:
        tuple: (xyxy_boxes, box_labels)
            - xyxy_boxes: 框坐标列表 [[x_min, y_min, x_max, y_max], ...]
            - box_labels: 框标签列表 [True/False, ...],True=正框,False=负框
    """
    if data is None or not isinstance(data, dict):
        return [], []
    
    xyxy_boxes = []
    
    if verbose:
        print(f"\n--- Shape Parsing Debug START ---")
        print(f"Debug: Data keys = {list(data.keys())}")
        print(f"Debug: Box mode history = {box_mode_history}")
    
    # 从 'points' 键提取框(ImagePrompter 主要格式)
    # 格式: [[x1, y1, label1, x2, y2, label2], ...]
    if 'points' in data and data['points'] is not None:
        points_list = data['points']
        
        for i, points in enumerate(points_list):
            if isinstance(points, (list, np.ndarray)) and len(points) >= 6:
                try:
                    # ImagePrompter 格式: [x1, y1, label1, x2, y2, label2]
                    x1 = float(points[0])
                    y1 = float(points[1])
                    x2 = float(points[3])
                    y2 = float(points[4])
                    
                    # 确保坐标顺序正确 (min, min, max, max)
                    x_min = min(x1, x2)
                    x_max = max(x1, x2)
                    y_min = min(y1, y2)
                    y_max = max(y1, y2)
                    
                    box = [x_min, y_min, x_max, y_max]
                    xyxy_boxes.append(box)
                    
                except (ValueError, TypeError, IndexError):
                    pass  # 跳过无效的点数据
    
    # 根据 box_mode_history 生成标签列表
    # 策略:根据历史记录中的切换点,确定每个框的模式
    box_labels = []
    current_mode = "positive"  # 默认为正框模式
    
    # 构建一个映射:框索引 -> 模式
    mode_switch_points = {}
    if box_mode_history:
        for box_idx, mode in box_mode_history:
            mode_switch_points[box_idx] = mode
    
    for i in range(len(xyxy_boxes)):
        # 检查是否在此索引处有模式切换
        if i in mode_switch_points:
            current_mode = mode_switch_points[i]
        
        is_positive = (current_mode == "positive")
        box_labels.append(is_positive)
    
    if verbose:
        print(f"Total boxes: {len(xyxy_boxes)} (正框: {sum(box_labels) if box_labels else 0}, 负框: {len(box_labels) - sum(box_labels) if box_labels else 0})")
        print(f"--- Shape Parsing Debug END ---\n")
                        
    return xyxy_boxes, box_labels


# --- 1. 辅助函数 ---

def plot_boxes_to_image(
    image_pil: Image,
    tgt: Dict,
    return_point: bool = False,
    point_width: float = 1.0,
    return_score=True,
) -> Image:
    """Plot bounding boxes and labels on an image."""
    boxes = tgt["boxes"]
    scores = tgt["scores"]

    draw = ImageDraw.Draw(image_pil)
    mask = Image.new("L", image_pil.size, 0)
    mask_draw = ImageDraw.Draw(mask)

    for box, score in zip(boxes, scores):
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        x0, y0, x1, y1 = box
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
        
        if return_point:
            center_x = int((x0 + x1) / 2)
            center_y = int((y0 + y1) / 2)
            draw.ellipse(
                (
                    center_x - point_width,
                    center_y - point_width,
                    center_x + point_width,
                    center_y + point_width,
                ),
                fill=color,
                width=point_width,
            )
        else:
            draw.rectangle([x0, y0, x1, y1], outline=color, width=int(point_width))

        if return_score:
            text = f"{score:.2f}"
        else:
            text = f""
        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((x0, y0), text, font)
        else:
            w, h = draw.textsize(text, font)
            bbox = (x0, y0, w + x0, y0 + h)
        if not return_point:
            draw.rectangle(bbox, fill=color)
            draw.text((x0, y0), text, fill="white")

        mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
    return image_pil, mask


def parse_visual_prompt(points: List):
    """Parse visual prompt points to bounding boxes (XYXY format)"""
    boxes = []
    pos_points = []
    neg_points = []
    for point in points:
        if point[2] == 2 and point[-1] == 3:
            x1, y1, _, x2, y2, _ = point
            boxes.append([x1, y1, x2, y2])
        elif point[2] == 1 and point[-1] == 4:
            x, y, _, _, _, _ = point
            pos_points.append([x, y])
        elif point[2] == 0 and point[-1] == 4:
            x, y, _, _, _, _ = point
            neg_points.append([x, y])
    return boxes, pos_points, neg_points


# --- 2. 模型和处理器初始化 ---

# 从 Hugging Face Hub 下载所有必要资源
bpe_path = None
sam3_checkpoint = None
example_image_hf_path = None

def download_resources_from_hf():
    """从 Hugging Face Hub 下载模型和资源文件"""
    global bpe_path, sam3_checkpoint, example_image_hf_path
    
    if not SAM3_INSTALLED:
        print("❌ sam3 库未安装,无法下载资源")
        return False
    
    try:
        # 1. 下载 BPE 词汇表
        bpe_path = hf_hub_download(
            repo_id=SAM3_HF_REPO_ID,
            filename="assets/bpe_simple_vocab_16e6.txt.gz",
            cache_dir=os.environ.get("HF_HOME", None)
        )
        print(f"✅ BPE 词汇表: {bpe_path}")
    except Exception as e:
        print(f"⚠️ 无法下载 BPE 词汇表: {e}")
        # 尝试从本地 sam3 模块获取
        if sam3 is not None:
            sam3_root = os.path.join(os.path.dirname(sam3.__file__), "..")
            bpe_path = os.path.join(sam3_root, "assets", "bpe_simple_vocab_16e6.txt.gz")
            if not os.path.exists(bpe_path):
                bpe_path = None
    
    try:
        # 2. 下载模型检查点
        # 优先使用环境变量指定的路径
        env_checkpoint = os.environ.get("SAM3_CHECKPOINT_PATH")
        if env_checkpoint and os.path.exists(env_checkpoint):
            sam3_checkpoint = env_checkpoint
            print(f"✅ 使用环境变量指定的模型: {sam3_checkpoint}")
        else:
            # 从 HF Hub 下载
            sam3_checkpoint = hf_hub_download(
                repo_id=SAM3_HF_REPO_ID,
                filename="checkpoints/sam3.pt",  # 或 "sam3.pt",根据实际仓库结构调整
                cache_dir=os.environ.get("HF_HOME", None)
            )
            print(f"✅ 模型检查点: {sam3_checkpoint}")
    except Exception as e:
        print(f"⚠️ 无法下载模型检查点: {e}")
        # 尝试其他文件名
        try:
            sam3_checkpoint = hf_hub_download(
                repo_id=SAM3_HF_REPO_ID,
                filename="sam3.pt",
                cache_dir=os.environ.get("HF_HOME", None)
            )
            print(f"✅ 模型检查点(备选): {sam3_checkpoint}")
        except:
            sam3_checkpoint = None
    
    try:
        # 3. 下载示例图片
        example_image_hf_path = hf_hub_download(
            repo_id=SAM3_HF_REPO_ID,
            filename="assets/images/test_image.jpg",
            cache_dir=os.environ.get("HF_HOME", None)
        )
        print(f"✅ 示例图片: {example_image_hf_path}")
    except Exception as e:
        print(f"⚠️ 无法下载示例图片: {e}")
        example_image_hf_path = None
    
    return bpe_path is not None and sam3_checkpoint is not None

# 启动时下载资源
print(f"\n{'='*50}")
print(f"正在从 Hugging Face Hub 下载资源...")
print(f"仓库 ID: {SAM3_HF_REPO_ID}")
print(f"{'='*50}\n")
download_resources_from_hf()

# 设备配置
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")

# 全局模型变量(延迟加载)
model = None
processor = None
autocast_ctx = None


def load_model():
    """延迟加载模型(支持 ZeroGPU)"""
    global model, processor, autocast_ctx
    
    if model is not None:
        return True
    
    if not SAM3_INSTALLED:
        print("❌ sam3 库未安装")
        return False
    
    if sam3_checkpoint is None:
        print("❌ 模型检查点路径未配置")
        return False
    
    if bpe_path is None:
        print("❌ BPE 词汇表路径未配置")
        return False
    
    try:
        if DEVICE == "cuda":
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True
            autocast_ctx = torch.autocast("cuda", dtype=torch.bfloat16)
            autocast_ctx.__enter__()
            model = build_sam3_image_model(bpe_path=bpe_path, checkpoint_path=sam3_checkpoint).to(DEVICE)
        else:
            autocast_ctx = None
            model = build_sam3_image_model(bpe_path=bpe_path, checkpoint_path=sam3_checkpoint).to(DEVICE)

        processor = Sam3Processor(model, confidence_threshold=0.5)
        print("✅ 模型加载成功")
        return True
        
    except Exception as e:
        print(f"❌ 模型加载失败: {e}")
        import traceback
        traceback.print_exc()
        model = None
        processor = None
        return False


# 非 ZeroGPU 环境下预加载模型
if not SPACES_GPU_AVAILABLE:
    load_model()


# --- 3. 可视化辅助函数 ---

def plot_to_pil(fig):
    """将 Matplotlib 图形转换为 PIL Image。"""
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    buf.seek(0)
    plt.close(fig) 
    return Image.open(buf).convert("RGB")


def get_result_figure(
    img: Image.Image, 
    results: dict,
    return_point: bool = False,
    point_width: float = 3.0,
    return_score: bool = True
) -> Tuple[plt.Figure, int]:
    """封装原始 plot_results 逻辑,支持显示中心点和置信度控制。
    
    Args:
        img: 输入图像
        results: 推理结果字典
        return_point: 是否显示中心点而不是边框
        point_width: 中心点或边框线宽
        return_score: 是否显示置信度分数
    """
    fig = plt.figure(figsize=(12, 8))
    plt.imshow(img)
    plt.axis("off")
    
    nb_objects = len(results.get("scores", []))
    print(f"found {nb_objects} object(s)") 
    
    for i in range(nb_objects):
        color = COLORS[i % len(COLORS)]
        
        if "masks" in results and i < len(results["masks"]):
            mask_data = results["masks"][i]
            if mask_data.ndim == 3:
                mask_data = mask_data.squeeze(0)
            plot_mask(mask_data.cpu(), color=color)
        
        if "boxes" in results and i < len(results["boxes"]):
            w, h = img.size
            box = results["boxes"][i].cpu().tolist()
            prob = results["scores"][i].item()
            
            # 根据参数决定显示方式
            if return_point:
                # 显示中心点
                x0, y0, x1, y1 = box
                center_x = (x0 + x1) / 2
                center_y = (y0 + y1) / 2
                circle = plt.Circle(
                    (center_x, center_y), 
                    point_width * 2, 
                    color=color, 
                    fill=True
                )
                plt.gca().add_patch(circle)
                
                # 如果显示置信度,在中心点旁边显示
                if return_score:
                    plt.text(
                        center_x + point_width * 3, 
                        center_y, 
                        f"{prob:.2f}",
                        color=color,
                        fontsize=10,
                        fontweight='bold'
                    )
            else:
                # 显示边框
                text = f"(id={i}, {prob:.2f})" if return_score else f"(id={i})"
                plot_bbox(
                    h,
                    w,
                    results["boxes"][i].cpu(),
                    text=text,
                    box_format="XYXY",
                    color=color,
                    relative_coords=False,
                )
            
    return fig, nb_objects


# --- 4. Gradio 推理函数 ---

def sam3_segmentation_core(
    unified_image_input: Any,
    prompt_text: str,
    box_type: str,
    box_mode_history: List[Tuple[int, str]],
    return_point: bool = False,
    point_width: float = 3.0,
    return_score: bool = True
):
    """核心分割函数"""
    global model, processor
    
    # 确保模型已加载
    if not SAM3_INSTALLED:
        return None, "❌ sam3 库未安装,请检查 requirements.txt 或 HF 仓库配置。", box_mode_history
    
    if model is None or processor is None:
        if not load_model():
            return None, "❌ 模型未加载,请检查模型配置。可能需要设置 SAM3_HF_REPO_ID 环境变量。", box_mode_history

    # 1. 从统一输入中提取图像和框数据
    image = None
    visual_prompter_data = None
    
    if IMAGE_PROMPTER_AVAILABLE and isinstance(unified_image_input, dict):
        image = unified_image_input.get('image')
        visual_prompter_data = unified_image_input
    else:
        image = unified_image_input
        visual_prompter_data = None

    if image is None:
        return None, "请上传图像。", box_mode_history
    
    img0 = image.copy()
    width, height = img0.size
    
    # 2. 图像预处理
    try:
        inference_state = processor.set_image(img0)
    except Exception as e:
        return None, f"图像处理失败: {e}", box_mode_history

    # 3. 清除并设置提示
    processor.reset_all_prompts(inference_state)
    found_objects = 0
    xyxy_boxes = []
    
    # --- 文本提示 ---
    if box_type == "Text":
        if not prompt_text:
            return None, "文本模式下,请提供文本提示。", box_mode_history
        inference_state = processor.set_text_prompt(
            state=inference_state, 
            prompt=prompt_text
        )
        caption_base = "文本提示分割"
        
    # --- 框提示 (Single/Multi Box) ---
    elif box_type in ["Single Box", "Multi Box"]:
        
        if not IMAGE_PROMPTER_AVAILABLE:
             return None, "当前环境不支持 ImagePrompter,Box 模式无法运行。", box_mode_history

        if visual_prompter_data:
            # 调用解析函数,传入框模式历史(推理时启用详细日志)
            xyxy_boxes, box_labels = process_imageprompter_data(visual_prompter_data, box_mode_history, verbose=True)
            print(f"Boxes: {xyxy_boxes}")
            print(f"Labels: {box_labels}")
        
        if not xyxy_boxes:
            return None, f"请在图像上绘制至少一个矩形框作为提示(当前模式: {box_type})。", box_mode_history
        
        # 针对 Single Box 模式,只取第一个框
        if box_type == "Single Box" and len(xyxy_boxes) > 1:
            xyxy_boxes = [xyxy_boxes[0]]
            box_labels = [box_labels[0]] if box_labels else [True]

        box_inputs = []
        
        for i, (x_min, y_min, x_max, y_max) in enumerate(xyxy_boxes):
            x = x_min
            y = y_min
            w = x_max - x_min
            h = y_max - y_min
            box_inputs.append([x, y, w, h])

        # 4. 转换并添加提示
        try:
            box_input_xywh = torch.tensor(box_inputs, dtype=torch.float32).view(-1, 4).to(DEVICE)
            box_input_cxcywh = box_xywh_to_cxcywh(box_input_xywh)
            norm_boxes_cxcywh = normalize_bbox(box_input_cxcywh, width, height).tolist()
            
            for i in range(len(box_inputs)):
                norm_box = norm_boxes_cxcywh[i]
                label = box_labels[i] if i < len(box_labels) else True
                label_str = "正框" if label else "负框"
                print(f"Adding box {i}: {norm_box}, label={label} ({label_str})")
                
                # 注意参数顺序: add_geometric_prompt(box, label, state)
                inference_state = processor.add_geometric_prompt(
                    state=inference_state, box=norm_box, label=label
                )
                
        except Exception as e:
            print(f"Error during box conversion/prompt setting: {e}")
            return None, f"框提示处理失败: {e}", box_mode_history
            
        num_positive = sum(box_labels) if box_labels else len(xyxy_boxes)
        num_negative = len(xyxy_boxes) - num_positive
        caption_base = f"使用 {len(xyxy_boxes)} 个提示框分割(正框: {num_positive}, 负框: {num_negative})"
        
    else:
        return None, "请选择有效的提示类型 (Text, Single Box, 或 Multi Box)。", box_mode_history

    # 5. 运行推理和可视化
    fig, found_objects = get_result_figure(
        img0.copy(), 
        inference_state,
        return_point=return_point,
        point_width=point_width,
        return_score=return_score
    ) 
    result_image = plot_to_pil(fig)
    
    return result_image, f"{caption_base}。找到 {found_objects} 个对象。", box_mode_history


# 根据是否支持 ZeroGPU 选择推理函数
if SPACES_GPU_AVAILABLE:
    @spaces.GPU
    def sam3_segmentation(
        unified_image_input: Any,
        prompt_text: str,
        box_type: str,
        box_mode_history: List[Tuple[int, str]],
        return_point: bool = False,
        point_width: float = 3.0,
        return_score: bool = True
    ):
        """ZeroGPU 版本的推理函数"""
        return sam3_segmentation_core(
            unified_image_input, prompt_text, box_type, 
            box_mode_history, return_point, point_width, return_score
        )
else:
    def sam3_segmentation(
        unified_image_input: Any,
        prompt_text: str,
        box_type: str,
        box_mode_history: List[Tuple[int, str]],
        return_point: bool = False,
        point_width: float = 3.0,
        return_score: bool = True
    ):
        """标准版本的推理函数"""
        return sam3_segmentation_core(
            unified_image_input, prompt_text, box_type, 
            box_mode_history, return_point, point_width, return_score
        )


# --- 5. 框模式切换处理函数 ---

def on_box_mode_change(
    new_mode: str, 
    unified_image_input: Any, 
    current_history: List[Tuple[int, str]]
) -> Tuple[List[Tuple[int, str]], str, Image.Image]:
    """
    当用户切换框模式时,记录当前框数量和新模式,并更新预览。
    
    Args:
        new_mode: 新选择的模式 ("正框 (Positive)" 或 "负框 (Negative)")
        unified_image_input: 当前 ImagePrompter 的数据
        current_history: 当前的模式切换历史
    
    Returns:
        tuple: (更新后的历史, 状态信息文本, 预览图像)
    """
    if current_history is None:
        current_history = []
    
    # 获取当前已绘制的框数量
    current_box_count = 0
    if unified_image_input and isinstance(unified_image_input, dict):
        points = unified_image_input.get('points', [])
        if points:
            current_box_count = len(points)
    
    # 转换模式名称
    mode_internal = "positive" if "Positive" in new_mode or "正框" in new_mode else "negative"
    
    # 添加新的切换点
    # 记录:从第 current_box_count 个框开始,使用新模式
    new_history = current_history.copy()
    new_history.append((current_box_count, mode_internal))
    
    # 生成状态信息
    mode_display = "正框" if mode_internal == "positive" else "负框"
    status = f"✅ 已切换到 {mode_display} 模式。从第 {current_box_count + 1} 个框开始将被标记为{mode_display}。"
    
    print(f"Box mode changed: {new_mode} -> {mode_internal}, at box index {current_box_count}")
    print(f"Updated history: {new_history}")
    
    # 生成预览图像(使用 verbose=False 避免频繁日志输出)
    preview_image = None
    if unified_image_input and isinstance(unified_image_input, dict):
        image = unified_image_input.get('image')
        if image is not None:
            xyxy_boxes, box_labels = process_imageprompter_data(unified_image_input, new_history, verbose=False)
            if xyxy_boxes:
                preview_image = draw_boxes_with_labels(image, xyxy_boxes, box_labels)
            else:
                preview_image = image
    
    return new_history, status, preview_image


def reset_box_mode_history(
    unified_image_input: Any
) -> Tuple[List[Tuple[int, str]], str, Image.Image]:
    """重置框模式历史并更新预览"""
    new_history = [(0, "positive")]
    status = "已重置,所有框将默认为正框。"
    
    # 生成预览图像(使用 verbose=False 避免频繁日志输出)
    preview_image = None
    if unified_image_input and isinstance(unified_image_input, dict):
        image = unified_image_input.get('image')
        if image is not None:
            xyxy_boxes, box_labels = process_imageprompter_data(unified_image_input, new_history, verbose=False)
            if xyxy_boxes:
                preview_image = draw_boxes_with_labels(image, xyxy_boxes, box_labels)
            else:
                preview_image = image
    
    return new_history, status, preview_image


def get_current_box_status(
    unified_image_input: Any,
    box_mode_history: List[Tuple[int, str]]
) -> str:
    """获取当前框的状态信息"""
    if not unified_image_input or not isinstance(unified_image_input, dict):
        return "尚未绘制框"
    
    points = unified_image_input.get('points', [])
    if not points:
        return "尚未绘制框"
    
    num_boxes = len(points)
    
    # 计算正负框数量
    if not box_mode_history:
        return f"已绘制 {num_boxes} 个框(全部为正框)"
    
    # 根据历史计算每个框的标签
    mode_switch_points = {}
    for box_idx, mode in box_mode_history:
        mode_switch_points[box_idx] = mode
    
    current_mode = "positive"
    positive_count = 0
    negative_count = 0
    
    for i in range(num_boxes):
        if i in mode_switch_points:
            current_mode = mode_switch_points[i]
        if current_mode == "positive":
            positive_count += 1
        else:
            negative_count += 1
    
    return f"已绘制 {num_boxes} 个框(正框: {positive_count}, 负框: {negative_count})"


def update_box_preview(
    unified_image_input: Any,
    box_mode_history: List[Tuple[int, str]]
) -> Tuple[Image.Image, str, str]:
    """
    更新框预览图像,显示带颜色和标签的框。
    
    Args:
        unified_image_input: ImagePrompter 的数据
        box_mode_history: 框模式历史
    
    Returns:
        tuple: (预览图像, 状态文本, 框提示参数文本)
    """
    # 获取状态文本
    status_text = get_current_box_status(unified_image_input, box_mode_history)
    
    # 检查输入有效性
    if not unified_image_input or not isinstance(unified_image_input, dict):
        return None, status_text, "None"
    
    image = unified_image_input.get('image')
    if image is None:
        return None, status_text, "None"
    
    # 解析框数据(使用 verbose=False 避免频繁日志输出)
    xyxy_boxes, box_labels = process_imageprompter_data(unified_image_input, box_mode_history, verbose=False)
    
    if not xyxy_boxes:
        return image, status_text, "None"
    
    # 绘制带颜色和标签的框
    preview_image = draw_boxes_with_labels(image, xyxy_boxes, box_labels)
    
    # 生成框提示参数文本
    boxes_int = [[int(coord) for coord in box] for box in xyxy_boxes]
    if len(xyxy_boxes) == 1:
        prompt_info_text = f"Box: {boxes_int[0]}\nLabel: {box_labels[0]}"
    else:
        prompt_info_text = f"Boxes: {boxes_int}\nLabels: {box_labels}"
    
    return preview_image, status_text, prompt_info_text


# --- 6. Gradio 接口定义 ---

# 示例图片加载(优先使用从 HF Hub 下载的图片)
example_image_path = None
example_image = None

# 优先级: HF Hub 下载 > 本地脚本目录 > sam3 模块目录 > 占位图
if example_image_hf_path and os.path.exists(example_image_hf_path):
    example_image_path = example_image_hf_path
    example_image = Image.open(example_image_hf_path)
    print(f"✅ 使用 HF Hub 下载的示例图片: {example_image_path}")
else:
    # 备选: 本地脚本目录
    SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
    sam3_asset_path = os.path.join(SCRIPT_DIR, "assets", "images", "test_image.jpg")
    
    if os.path.exists(sam3_asset_path):
        example_image_path = os.path.abspath(sam3_asset_path)
        example_image = Image.open(sam3_asset_path)
        print(f"✅ 使用本地示例图片: {example_image_path}")
    elif sam3 is not None:
        # 备选: sam3 模块目录
        sam3_root = os.path.join(os.path.dirname(sam3.__file__), "..")
        sam3_asset_path = os.path.join(sam3_root, "assets", "images", "test_image.jpg")
        if os.path.exists(sam3_asset_path):
            example_image_path = os.path.abspath(sam3_asset_path)
            example_image = Image.open(sam3_asset_path)
            print(f"✅ 使用 sam3 模块示例图片: {example_image_path}")

if example_image is None:
    print(f"⚠️ 示例图片未找到,使用占位图")
    example_image_path = None
    example_image = Image.new('RGB', (512, 512), color='lightgray')

# 示例数据:ImagePrompter 需要使用 "image" 和 "points" 格式
# points 格式: [[x1, y1, label1, x2, y2, label2], ...]
# 其中 label1=2, label2=3 表示框的起点和终点

# 示例框坐标和标签说明
# Single Box: Box=[487.0, 302.0, 591.0, 641.0], Label=True (正框)
# Multi Box: Boxes=[[487.0, 302.0, 591.0, 641.0], [341.0, 275.0, 495.0, 662.0]], Labels=[True, False]

# 用于示例展示的提示信息
example_prompts_info = {
    "Text": "None",
    "Single Box": "Box: [487, 302, 591, 641]\nLabel: True",
    "Multi Box": "Boxes: [[487, 302, 591, 641], [341, 275, 495, 662]]\nLabels: [False, True]"
}

if IMAGE_PROMPTER_AVAILABLE:
    # 注意:使用文件路径而非 PIL Image 对象,以便 Gradio Examples 正确显示缩略图
    if example_image_path:
        example_data_corrected = [
            [{"image": example_image_path, "points": []}, "Text", example_prompts_info["Text"], "shoe"],
            [{"image": example_image_path, "points": [[487.0, 302.0, 2, 591.0, 641.0, 3]]}, "Single Box", example_prompts_info["Single Box"], ""],
            [{"image": example_image_path, "points": [[487.0, 302.0, 2, 591.0, 641.0, 3], [341.0, 275.0, 2, 495.0, 662.0, 3]]}, "Multi Box", example_prompts_info["Multi Box"], ""],
        ]
    else:
        example_data_corrected = [
            [{"image": example_image, "points": []}, "Text", example_prompts_info["Text"], "shoe"],
            [{"image": example_image, "points": [[487.0, 302.0, 2, 591.0, 641.0, 3]]}, "Single Box", example_prompts_info["Single Box"], ""],
            [{"image": example_image, "points": [[487.0, 302.0, 2, 591.0, 641.0, 3], [341.0, 275.0, 2, 495.0, 662.0, 3]]}, "Multi Box", example_prompts_info["Multi Box"], ""],
        ]
    # 设定 Multi Box 示例的默认历史:第0个框为负框,第1个框为正框
    example_multi_box_history = [(0, "negative"), (1, "positive")]
else:
    # 非 ImagePrompter 模式,使用路径或 PIL Image
    if example_image_path:
        example_data_corrected = [
            [example_image_path, "Text", example_prompts_info["Text"], "shoe"],
            [example_image_path, "Single Box", example_prompts_info["Single Box"], ""],
            [example_image_path, "Multi Box", example_prompts_info["Multi Box"], ""],
        ]
    else:
        example_data_corrected = [
            [example_image, "Text", example_prompts_info["Text"], "shoe"],
            [example_image, "Single Box", example_prompts_info["Single Box"], ""],
            [example_image, "Multi Box", example_prompts_info["Multi Box"], ""],
        ]
    example_multi_box_history = [(0, "positive")]


def on_example_select(
    unified_image_input: Any,
    prompt_type: str
) -> Tuple[List[Tuple[int, str]], Image.Image, str]:
    """
    当用户选择示例时,自动更新框模式历史和预览。
    
    Args:
        unified_image_input: ImagePrompter 的数据
        prompt_type: 提示类型 (Text, Single Box, Multi Box)
    
    Returns:
        tuple: (框模式历史, 预览图像, 状态文本)
    """
    # 根据提示类型设置框模式历史
    if prompt_type == "Multi Box":
        # Multi Box 示例: 第0个框为正框,第1个框为负框
        box_history = [(0, "positive"), (1, "negative")]
    elif prompt_type == "Single Box":
        # Single Box 示例: 只有一个正框
        box_history = [(0, "positive")]
    else:
        # Text 模式: 默认历史
        box_history = [(0, "positive")]
    
    # 生成预览图像
    preview_image = None
    status_text = "尚未绘制框"
    
    if unified_image_input and isinstance(unified_image_input, dict):
        image = unified_image_input.get('image')
        if image is not None:
            xyxy_boxes, box_labels = process_imageprompter_data(unified_image_input, box_history, verbose=False)
            if xyxy_boxes:
                preview_image = draw_boxes_with_labels(image, xyxy_boxes, box_labels)
                num_positive = sum(box_labels)
                num_negative = len(box_labels) - num_positive
                status_text = f"已绘制 {len(xyxy_boxes)} 个框(正框: {num_positive}, 负框: {num_negative})"
            else:
                preview_image = image
    
    return box_history, preview_image, status_text


# 构建 Gradio 界面
# 注意:为保证与各版本 Gradio 的兼容性,使用最简配置
with gr.Blocks() as demo:
    # 状态变量:存储框模式切换历史
    box_mode_history_state = gr.State([(0, "positive")])  # 默认从第0个框开始为正框模式
    
    gr.Markdown(
        """
        # 🎯 SAM 3 Demo
        **Segment Anything Model 3 - 目标检测与分割**
        
        > 🚀 Powered by Hugging Face Spaces
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            # 使用说明放在左侧第一行
            with gr.Accordion("📋 使用说明", open=False):
                gr.Markdown("""
                **使用方法:**
                
                📝 **Text 模式**
                1. 选择 "Text" 模式
                2. 上传图像
                3. 输入文本提示词(如 "shoe", "person")
                4. 点击"运行 SAM 3 分割"
                
                ⬜ **Single Box 模式**
                1. 选择 "Single Box" 模式
                2. 上传图像
                3. 在图像上绘制一个矩形框
                4. 点击"运行 SAM 3 分割"
                
                🔲 **Multi Box 模式(支持正/负框)**
                1. 选择 "Multi Box" 模式
                2. 上传图像
                3. **默认为正框模式**,绘制的框将包含目标
                4. 如需绘制负框(排除区域):
                   - 先绘制正框
                   - 点击切换到 "负框 (Negative)" 模式
                   - 继续绘制负框
                5. 点击「🔄 刷新预览」按钮查看框标签预览
                6. 点击"运行 SAM 3 分割"
                
                💡 **正框 vs 负框**
                - **正框(红色)**: 告诉模型"包含这个区域的目标"
                - **负框(绿色)**: 告诉模型"排除这个区域",用于去除误检
                - **注意**: 负框需要配合正框使用才能生效
                
                ⚙️ **显示选项**
                - **显示中心点**: 用圆点代替边框显示检测结果中心位置
                - **显示置信度**: 在结果中显示模型的置信度分数
                - **线条/点宽度**: 调整边框线宽或中心点大小
                """)
            
            if IMAGE_PROMPTER_AVAILABLE:
                unified_image_input = ImagePrompter(
                    label="🖼️ 示例图像",
                    type="pil"
                )
            else:
                unified_image_input = gr.Image(
                    label="🖼️ 示例图像",
                    type="pil"
                )
            
            prompt_type = gr.Radio(
                ["Text", "Single Box", "Multi Box"], 
                label="提示类型", 
                value="Text"
            )
            
            text_prompt_input = gr.Textbox(
                label="文本提示参数",
                value="shoe",
                visible=True
            )
            
            # 添加一个用于显示框提示信息的文本框(仅用于示例展示)
            example_prompt_info_display = gr.Textbox(
                label="框提示参数",
                value="",
                interactive=False,
                lines=2,
                visible=True
            )
            
            # 框模式选择器(仅 Multi Box 模式显示)
            with gr.Group(visible=False) as box_mode_group:
                gr.Markdown("### 🎯 框模式设置")
                box_mode_selector = gr.Radio(
                    ["正框 (Positive)", "负框 (Negative)"],
                    label="当前绘制模式",
                    value="正框 (Positive)",
                    info="正框=包含目标,负框=排除区域"
                )
                with gr.Row():
                    reset_history_btn = gr.Button("🔄 重置框标签", size="sm")
            
            # 框预览区域(Single Box 和 Multi Box 模式都显示)
            with gr.Group(visible=False) as box_preview_group:
                gr.Markdown("### 📦 框预览(红色=正框 True,绿色=负框 False)")
                box_status_text = gr.Textbox(
                    label="框状态",
                    value="尚未绘制框",
                    interactive=False
                )
                refresh_preview_btn = gr.Button("🔄 刷新预览", size="sm", variant="secondary")
                gr.Markdown("*绘制框后点击「刷新预览」按钮查看标注效果*")
                box_preview_image = gr.Image(
                    label="框标签预览",
                    type="pil",
                    interactive=False
                )
            
            # 显示选项(调整到左侧)
            gr.Markdown("### ⚙️ 显示选项")
            with gr.Row():
                return_point = gr.Checkbox(label="显示中心点", value=False)
                return_score = gr.Checkbox(label="显示置信度", value=True)
            point_width = gr.Slider(
                label="线条/点宽度",
                value=3.0,
                minimum=0.0,
                maximum=20.0,
                step=0.1,
            )
            
            run_button = gr.Button("Run SAM3", variant="primary")

        with gr.Column(scale=2):
            output_image = gr.Image(label="分割结果", type="pil")
            result_info = gr.Textbox(label="结果信息", lines=2)
            
            def run_example(img, ptype, prompt_info, text):
                """运行示例时使用正确的框模式历史"""
                if ptype == "Multi Box":
                    # Multi Box 示例: 第0个框为正框,第1个框为负框
                    history = [(0, "negative"), (1, "positive")]
                else:
                    history = [(0, "positive")]
                result_img, result_text, _ = sam3_segmentation(img, text, ptype, history, False, 3.0, True)
                return result_img, result_text
            
            gr.Examples(
                examples=example_data_corrected, 
                inputs=[unified_image_input, prompt_type, example_prompt_info_display, text_prompt_input], 
                outputs=[output_image, result_info],
                fn=run_example,
                cache_examples=False,
                label="示例"
            )

    # 事件绑定
    run_button.click(
        fn=sam3_segmentation,
        inputs=[unified_image_input, text_prompt_input, prompt_type, box_mode_history_state, return_point, point_width, return_score], 
        outputs=[output_image, result_info, box_mode_history_state]
    )

    # 框模式切换事件(同时更新预览)
    box_mode_selector.change(
        fn=on_box_mode_change,
        inputs=[box_mode_selector, unified_image_input, box_mode_history_state],
        outputs=[box_mode_history_state, box_status_text, box_preview_image]
    )
    
    # 重置框历史(同时更新预览)
    reset_history_btn.click(
        fn=reset_box_mode_history,
        inputs=[unified_image_input],
        outputs=[box_mode_history_state, box_status_text, box_preview_image]
    )
    
    # 手动刷新预览按钮(避免 change 事件导致的持续更新问题)
    # 同时更新框提示参数
    refresh_preview_btn.click(
        fn=update_box_preview,
        inputs=[unified_image_input, box_mode_history_state],
        outputs=[box_preview_image, box_status_text, example_prompt_info_display]
    )

    def update_inputs(p_type):
        is_text = p_type == "Text"
        is_multi_box = p_type == "Multi Box"
        is_box_mode = p_type in ["Single Box", "Multi Box"]  # Single Box 和 Multi Box 都显示预览
        return (
            gr.update(visible=is_text),      # text_prompt_input
            gr.update(visible=is_multi_box), # box_mode_group(正/负框切换,仅 Multi Box)
            gr.update(visible=is_box_mode)   # box_preview_group(框预览,Single/Multi Box 都显示)
        )

    def update_inputs_and_preview(p_type, img_input):
        """
        更新输入组件可见性,并在示例加载时自动更新预览。
        """
        is_text = p_type == "Text"
        is_multi_box = p_type == "Multi Box"
        is_box_mode = p_type in ["Single Box", "Multi Box"]  # Single Box 和 Multi Box 都显示预览
        
        # 根据提示类型设置框模式历史
        if p_type == "Multi Box":
            box_history = [(0, "negative"), (1, "positive")]
        elif p_type == "Single Box":
            box_history = [(0, "positive")]
        else:
            box_history = [(0, "positive")]
        
        # 生成预览图像
        preview_image = None
        status_text = "尚未绘制框"
        
        if img_input and isinstance(img_input, dict):
            image = img_input.get('image')
            if image is not None:
                xyxy_boxes, box_labels = process_imageprompter_data(img_input, box_history, verbose=False)
                if xyxy_boxes:
                    preview_image = draw_boxes_with_labels(image, xyxy_boxes, box_labels)
                    num_positive = sum(box_labels)
                    num_negative = len(box_labels) - num_positive
                    status_text = f"已绘制 {len(xyxy_boxes)} 个框(正框: {num_positive}, 负框: {num_negative})"
                else:
                    preview_image = image
        
        return (
            gr.update(visible=is_text),      # text_prompt_input
            gr.update(visible=is_multi_box), # box_mode_group(正/负框切换,仅 Multi Box)
            gr.update(visible=is_box_mode),  # box_preview_group(框预览,Single/Multi Box 都显示)
            box_history,                     # box_mode_history_state
            preview_image,                   # box_preview_image
            status_text                      # box_status_text
        )

    prompt_type.change(
        fn=update_inputs_and_preview,
        inputs=[prompt_type, unified_image_input],
        outputs=[text_prompt_input, box_mode_group, box_preview_group, box_mode_history_state, box_preview_image, box_status_text] 
    )
    
    # 注意:已移除 unified_image_input.change 事件,避免动态刷新问题
    # 用户绘制框后需要手动点击「刷新预览」按钮查看预览
    
    demo.load(
        fn=update_inputs,
        inputs=[prompt_type],
        outputs=[text_prompt_input, box_mode_group, box_preview_group]
    )


# Hugging Face Spaces 启动配置
if __name__ == "__main__":
    # Hugging Face Spaces 会自动处理端口、地址和共享设置
    # 不要指定 server_name 和 server_port,让平台自动配置
    demo.launch(
        show_error=True  # 显示详细错误信息,方便调试
    )