Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,10 +27,26 @@ def get_default_negative_prompt(existing_json: dict) -> str:
|
|
| 27 |
return negative_prompt
|
| 28 |
|
| 29 |
@spaces.GPU(duration=300)
|
| 30 |
-
def
|
| 31 |
prompt,
|
| 32 |
-
prompt_refine,
|
| 33 |
prompt_inspire_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
prompt_in_json,
|
| 35 |
negative_prompt="",
|
| 36 |
seed=42,
|
|
@@ -39,28 +55,66 @@ def infer(
|
|
| 39 |
height=1024,
|
| 40 |
guidance_scale=5,
|
| 41 |
num_inference_steps=50,
|
| 42 |
-
mode="generate",
|
| 43 |
):
|
| 44 |
if randomize_seed:
|
| 45 |
seed = random.randint(0, MAX_SEED)
|
| 46 |
|
| 47 |
with torch.inference_mode():
|
| 48 |
-
|
| 49 |
-
if
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
json.dumps(prompt_in_json)
|
| 52 |
if isinstance(prompt_in_json, (dict, list))
|
| 53 |
else str(prompt_in_json)
|
| 54 |
)
|
| 55 |
-
output = vlm_pipe(json_prompt=json_prompt_str, prompt=prompt_refine)
|
| 56 |
-
|
| 57 |
-
elif mode == "inspire":
|
| 58 |
-
if prompt_inspire_image is None:
|
| 59 |
-
raise ValueError("Please upload an image to inspire the model.")
|
| 60 |
-
output = vlm_pipe(image=prompt_inspire_image, prompt="")
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
else:
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
json_prompt = output.values["json_prompt"]
|
| 65 |
|
| 66 |
if negative_prompt:
|
|
@@ -77,8 +131,9 @@ def infer(
|
|
| 77 |
height=height,
|
| 78 |
guidance_scale=guidance_scale,
|
| 79 |
).images[0]
|
|
|
|
| 80 |
print(neg_json_prompt)
|
| 81 |
-
return image, seed, json_prompt, json.dumps(neg_json_prompt)
|
| 82 |
|
| 83 |
|
| 84 |
css = """
|
|
@@ -104,28 +159,31 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="violet")) as demo:
|
|
| 104 |
|
| 105 |
with gr.Row(elem_id="col-container"):
|
| 106 |
with gr.Column(scale=1):
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
with gr.Row():
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
with gr.Tab("refine") as tab_refine:
|
| 116 |
-
prompt_refine = gr.Textbox(
|
| 117 |
-
label="Prompt",
|
| 118 |
-
info="describe the change you want to make",
|
| 119 |
-
placeholder="make the cat white"
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
with gr.Tab("inspire") as tab_inspire:
|
| 123 |
-
prompt_inspire_image = gr.Image(
|
| 124 |
-
label="Inspiration Image",
|
| 125 |
-
type="pil",
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
submit_btn = gr.Button("Generate", variant="primary")
|
| 129 |
|
| 130 |
with gr.Accordion("Advanced Settings", open=False):
|
| 131 |
with gr.Row():
|
|
@@ -144,27 +202,42 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="violet")) as demo:
|
|
| 144 |
|
| 145 |
with gr.Column(scale=1):
|
| 146 |
result = gr.Image(label="output")
|
| 147 |
-
with gr.Accordion("Structured Prompt", open=False) as structured_accordion:
|
| 148 |
-
prompt_in_json = gr.JSON(label="json structured prompt")
|
| 149 |
-
|
| 150 |
-
# Track active tab
|
| 151 |
-
current_mode = gr.State("generate")
|
| 152 |
-
# When "generate" is selected — just set mode
|
| 153 |
-
tab_generate.select(lambda: ("generate", gr.update(value=True)), outputs=[current_mode, randomize_seed])
|
| 154 |
-
|
| 155 |
-
# When "refine" is selected — set mode and turn off randomize_seed
|
| 156 |
-
tab_refine.select(lambda: ("refine", gr.update(value=False)), outputs=[current_mode, randomize_seed])
|
| 157 |
-
|
| 158 |
-
# When "inspire" is selected — normal
|
| 159 |
-
tab_inspire.select(lambda: ("inspire", gr.update(value=True)), outputs=[current_mode, randomize_seed])
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
|
|
|
| 164 |
inputs=[
|
| 165 |
prompt_generate,
|
| 166 |
-
prompt_refine,
|
| 167 |
prompt_inspire_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
prompt_in_json,
|
| 169 |
negative_prompt,
|
| 170 |
seed,
|
|
@@ -173,9 +246,8 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="violet")) as demo:
|
|
| 173 |
height,
|
| 174 |
guidance_scale,
|
| 175 |
num_inference_steps,
|
| 176 |
-
current_mode,
|
| 177 |
],
|
| 178 |
-
outputs=[result, seed, prompt_in_json, negative_prompt_json
|
| 179 |
)
|
| 180 |
|
| 181 |
-
demo.queue().launch()
|
|
|
|
| 27 |
return negative_prompt
|
| 28 |
|
| 29 |
@spaces.GPU(duration=300)
|
| 30 |
+
def generate_json_prompt(
|
| 31 |
prompt,
|
|
|
|
| 32 |
prompt_inspire_image,
|
| 33 |
+
use_inspire,
|
| 34 |
+
):
|
| 35 |
+
with torch.inference_mode():
|
| 36 |
+
if use_inspire and prompt_inspire_image is not None:
|
| 37 |
+
output = vlm_pipe(image=prompt_inspire_image, prompt="")
|
| 38 |
+
else:
|
| 39 |
+
output = vlm_pipe(prompt=prompt)
|
| 40 |
+
|
| 41 |
+
json_prompt = output.values["json_prompt"]
|
| 42 |
+
|
| 43 |
+
return json_prompt
|
| 44 |
+
|
| 45 |
+
@spaces.GPU(duration=300)
|
| 46 |
+
def generate_image(
|
| 47 |
+
prompt,
|
| 48 |
+
prompt_inspire_image,
|
| 49 |
+
use_inspire,
|
| 50 |
prompt_in_json,
|
| 51 |
negative_prompt="",
|
| 52 |
seed=42,
|
|
|
|
| 55 |
height=1024,
|
| 56 |
guidance_scale=5,
|
| 57 |
num_inference_steps=50,
|
|
|
|
| 58 |
):
|
| 59 |
if randomize_seed:
|
| 60 |
seed = random.randint(0, MAX_SEED)
|
| 61 |
|
| 62 |
with torch.inference_mode():
|
| 63 |
+
# If JSON prompt is empty or None, generate it first
|
| 64 |
+
if not prompt_in_json or prompt_in_json == "":
|
| 65 |
+
if use_inspire and prompt_inspire_image is not None:
|
| 66 |
+
output = vlm_pipe(image=prompt_inspire_image, prompt="")
|
| 67 |
+
else:
|
| 68 |
+
output = vlm_pipe(prompt=prompt)
|
| 69 |
+
json_prompt = output.values["json_prompt"]
|
| 70 |
+
else:
|
| 71 |
+
# Use the provided JSON prompt
|
| 72 |
+
json_prompt = (
|
| 73 |
json.dumps(prompt_in_json)
|
| 74 |
if isinstance(prompt_in_json, (dict, list))
|
| 75 |
else str(prompt_in_json)
|
| 76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
if negative_prompt:
|
| 79 |
+
neg_output = vlm_pipe(prompt=negative_prompt)
|
| 80 |
+
neg_json_prompt = neg_output.values["json_prompt"]
|
| 81 |
else:
|
| 82 |
+
neg_json_prompt = get_default_negative_prompt(json.loads(json_prompt))
|
| 83 |
+
|
| 84 |
+
image = pipe(
|
| 85 |
+
prompt=json_prompt,
|
| 86 |
+
num_inference_steps=num_inference_steps,
|
| 87 |
+
negative_prompt=neg_json_prompt,
|
| 88 |
+
width=width,
|
| 89 |
+
height=height,
|
| 90 |
+
guidance_scale=guidance_scale,
|
| 91 |
+
).images[0]
|
| 92 |
+
|
| 93 |
+
print(neg_json_prompt)
|
| 94 |
+
return image, seed, json_prompt, json.dumps(neg_json_prompt), gr.update(visible=True)
|
| 95 |
+
|
| 96 |
+
@spaces.GPU(duration=300)
|
| 97 |
+
def refine_prompt(
|
| 98 |
+
refine_instruction,
|
| 99 |
+
prompt_in_json,
|
| 100 |
+
negative_prompt="",
|
| 101 |
+
seed=42,
|
| 102 |
+
randomize_seed=False,
|
| 103 |
+
width=1024,
|
| 104 |
+
height=1024,
|
| 105 |
+
guidance_scale=5,
|
| 106 |
+
num_inference_steps=50,
|
| 107 |
+
):
|
| 108 |
+
if randomize_seed:
|
| 109 |
+
seed = random.randint(0, MAX_SEED)
|
| 110 |
+
|
| 111 |
+
with torch.inference_mode():
|
| 112 |
+
json_prompt_str = (
|
| 113 |
+
json.dumps(prompt_in_json)
|
| 114 |
+
if isinstance(prompt_in_json, (dict, list))
|
| 115 |
+
else str(prompt_in_json)
|
| 116 |
+
)
|
| 117 |
+
output = vlm_pipe(json_prompt=json_prompt_str, prompt=refine_instruction)
|
| 118 |
json_prompt = output.values["json_prompt"]
|
| 119 |
|
| 120 |
if negative_prompt:
|
|
|
|
| 131 |
height=height,
|
| 132 |
guidance_scale=guidance_scale,
|
| 133 |
).images[0]
|
| 134 |
+
|
| 135 |
print(neg_json_prompt)
|
| 136 |
+
return image, seed, json_prompt, json.dumps(neg_json_prompt)
|
| 137 |
|
| 138 |
|
| 139 |
css = """
|
|
|
|
| 159 |
|
| 160 |
with gr.Row(elem_id="col-container"):
|
| 161 |
with gr.Column(scale=1):
|
| 162 |
+
|
| 163 |
+
with gr.Accordion("Inspire from Image", open=False) as inspire_accordion:
|
| 164 |
+
prompt_inspire_image = gr.Image(
|
| 165 |
+
label="Inspiration Image",
|
| 166 |
+
type="pil",
|
| 167 |
+
)
|
| 168 |
+
use_inspire = gr.Checkbox(label="Use inspiration image", value=False)
|
| 169 |
+
|
| 170 |
+
prompt_generate = gr.Textbox(
|
| 171 |
+
label="Prompt",
|
| 172 |
+
placeholder="a man holding a goose screaming",
|
| 173 |
+
lines=3
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
prompt_in_json = gr.JSON(
|
| 177 |
+
label="Structured JSON Prompt (editable)",
|
| 178 |
+
value=None
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
with gr.Row():
|
| 182 |
+
generate_json_btn = gr.Button("Generate JSON Prompt", variant="secondary")
|
| 183 |
+
generate_image_btn = gr.Button("Generate Image", variant="primary")
|
| 184 |
+
|
| 185 |
+
# Refine button - initially hidden
|
| 186 |
+
refine_btn = gr.Button("Refine existing image", variant="primary", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
with gr.Accordion("Advanced Settings", open=False):
|
| 189 |
with gr.Row():
|
|
|
|
| 202 |
|
| 203 |
with gr.Column(scale=1):
|
| 204 |
result = gr.Image(label="output")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
# Generate JSON prompt only
|
| 207 |
+
generate_json_btn.click(
|
| 208 |
+
fn=generate_json_prompt,
|
| 209 |
+
inputs=[
|
| 210 |
+
prompt_generate,
|
| 211 |
+
prompt_inspire_image,
|
| 212 |
+
use_inspire,
|
| 213 |
+
],
|
| 214 |
+
outputs=[prompt_in_json],
|
| 215 |
+
)
|
| 216 |
|
| 217 |
+
# Generate image (generates JSON first if needed)
|
| 218 |
+
generate_image_btn.click(
|
| 219 |
+
fn=generate_image,
|
| 220 |
inputs=[
|
| 221 |
prompt_generate,
|
|
|
|
| 222 |
prompt_inspire_image,
|
| 223 |
+
use_inspire,
|
| 224 |
+
prompt_in_json,
|
| 225 |
+
negative_prompt,
|
| 226 |
+
seed,
|
| 227 |
+
randomize_seed,
|
| 228 |
+
width,
|
| 229 |
+
height,
|
| 230 |
+
guidance_scale,
|
| 231 |
+
num_inference_steps,
|
| 232 |
+
],
|
| 233 |
+
outputs=[result, seed, prompt_in_json, negative_prompt_json, refine_btn],
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Refine image (reuses the main prompt box)
|
| 237 |
+
refine_btn.click(
|
| 238 |
+
fn=refine_prompt,
|
| 239 |
+
inputs=[
|
| 240 |
+
prompt_generate, # Reuse the main prompt box
|
| 241 |
prompt_in_json,
|
| 242 |
negative_prompt,
|
| 243 |
seed,
|
|
|
|
| 246 |
height,
|
| 247 |
guidance_scale,
|
| 248 |
num_inference_steps,
|
|
|
|
| 249 |
],
|
| 250 |
+
outputs=[result, seed, prompt_in_json, negative_prompt_json],
|
| 251 |
)
|
| 252 |
|
| 253 |
+
demo.queue().launch()
|