Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,256 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"""
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
messages = [{"role": "system", "content": system_message}]
|
| 20 |
-
|
| 21 |
-
messages.extend(history)
|
| 22 |
-
|
| 23 |
-
messages.append({"role": "user", "content": message})
|
| 24 |
-
|
| 25 |
-
response = ""
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
chatbot = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
type="messages",
|
| 49 |
-
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
-
)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import io
|
| 3 |
+
import time
|
| 4 |
+
import re
|
| 5 |
+
from typing import Generator, Tuple, Union
|
| 6 |
+
import numpy as np
|
| 7 |
+
import soundfile as sf
|
| 8 |
+
from fastrtc import (
|
| 9 |
+
AlgoOptions,
|
| 10 |
+
ReplyOnPause,
|
| 11 |
+
Stream,
|
| 12 |
+
)
|
| 13 |
+
from cartesia import Cartesia
|
| 14 |
+
from loguru import logger
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
import os
|
| 17 |
+
load_dotenv()
|
| 18 |
+
from websearch_agent import agent, agent_config
|
| 19 |
+
|
| 20 |
+
logger.remove()
|
| 21 |
+
logger.add(
|
| 22 |
+
lambda msg: print(msg),
|
| 23 |
+
colorize=True,
|
| 24 |
+
format="<green>{time:HH:mm:ss}</green> | <level>{level}</level> | <level>{message}</level>",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Initialize Cartesia with API key
|
| 28 |
+
cartesia_client = Cartesia(api_key=os.getenv("CARTESIA_API_KEY"))
|
| 29 |
+
|
| 30 |
+
# Cartesia Sonic 3 TTS Configuration
|
| 31 |
+
logger.info("π€ Initializing Cartesia Sonic 3 TTS...")
|
| 32 |
+
CARTESIA_TTS_CONFIG = {
|
| 33 |
+
"model_id": "sonic-3", # Latest streaming TTS model
|
| 34 |
+
"voice": {
|
| 35 |
+
"mode": "id",
|
| 36 |
+
"id": "f786b574-daa5-4673-aa0c-cbe3e8534c02", # Katie - stable, realistic voice for voice agents
|
| 37 |
+
},
|
| 38 |
+
"output_format": {
|
| 39 |
+
"container": "raw",
|
| 40 |
+
"sample_rate": 24000,
|
| 41 |
+
"encoding": "pcm_f32le",
|
| 42 |
+
},
|
| 43 |
+
}
|
| 44 |
+
logger.info("β
Cartesia Sonic 3 TTS configured successfully")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def response(
|
| 48 |
+
audio: tuple[int, np.ndarray],
|
| 49 |
+
) -> Generator[Tuple[int, np.ndarray], None, None]:
|
| 50 |
"""
|
| 51 |
+
Process audio input, transcribe it, generate a response using LangGraph, and deliver TTS audio.
|
| 52 |
+
Optimized for ultra-low latency with Cartesia STT and Sonic 3 TTS.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
audio: Tuple containing sample rate and audio data
|
| 56 |
+
|
| 57 |
+
Yields:
|
| 58 |
+
Tuples of (sample_rate, audio_array) for audio playback
|
| 59 |
"""
|
| 60 |
+
start_time = time.time()
|
| 61 |
+
logger.info("ποΈ Received audio input")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# ============ STT (Speech-to-Text) with Cartesia ============
|
| 64 |
+
stt_start = time.time()
|
| 65 |
+
logger.debug("π Transcribing audio with Cartesia...")
|
| 66 |
+
sample_rate, audio_data = audio
|
| 67 |
+
|
| 68 |
+
# Convert audio to PCM format for Cartesia
|
| 69 |
+
# Cartesia expects 16kHz, 16-bit PCM
|
| 70 |
+
target_sample_rate = 16000
|
| 71 |
+
|
| 72 |
+
# Resample if needed
|
| 73 |
+
if sample_rate != target_sample_rate:
|
| 74 |
+
import librosa
|
| 75 |
+
# Convert to float32 for resampling
|
| 76 |
+
if audio_data.dtype != np.float32:
|
| 77 |
+
audio_float = audio_data.astype(np.float32) / np.iinfo(audio_data.dtype).max
|
| 78 |
+
else:
|
| 79 |
+
audio_float = audio_data
|
| 80 |
+
|
| 81 |
+
# Resample
|
| 82 |
+
audio_resampled = librosa.resample(
|
| 83 |
+
audio_float.T.flatten() if audio_float.ndim > 1 else audio_float,
|
| 84 |
+
orig_sr=sample_rate,
|
| 85 |
+
target_sr=target_sample_rate
|
| 86 |
+
)
|
| 87 |
+
audio_data = audio_resampled
|
| 88 |
+
sample_rate = target_sample_rate
|
| 89 |
+
|
| 90 |
+
# Convert to 16-bit PCM bytes
|
| 91 |
+
if audio_data.dtype == np.float32:
|
| 92 |
+
audio_int16 = (audio_data * 32767).astype(np.int16)
|
| 93 |
+
else:
|
| 94 |
+
audio_int16 = audio_data.astype(np.int16)
|
| 95 |
+
|
| 96 |
+
audio_bytes = audio_int16.tobytes()
|
| 97 |
+
|
| 98 |
+
# Create websocket connection with optimized endpointing
|
| 99 |
+
ws = cartesia_client.stt.websocket(
|
| 100 |
+
model="ink-whisper",
|
| 101 |
+
language="en",
|
| 102 |
+
encoding="pcm_s16le",
|
| 103 |
+
sample_rate=target_sample_rate,
|
| 104 |
+
min_volume=0.1, # Low threshold for voice detection
|
| 105 |
+
max_silence_duration_secs=0.3, # Quick endpointing
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Send audio in chunks (20ms chunks for streaming)
|
| 109 |
+
chunk_size = int(target_sample_rate * 0.02 * 2) # 20ms chunks
|
| 110 |
+
for i in range(0, len(audio_bytes), chunk_size):
|
| 111 |
+
chunk = audio_bytes[i:i + chunk_size]
|
| 112 |
+
if chunk:
|
| 113 |
+
ws.send(chunk)
|
| 114 |
+
|
| 115 |
+
# Finalize transcription
|
| 116 |
+
ws.send("finalize")
|
| 117 |
+
ws.send("done")
|
| 118 |
+
|
| 119 |
+
# Receive transcription results
|
| 120 |
+
transcript = ""
|
| 121 |
+
for result in ws.receive():
|
| 122 |
+
if result['type'] == 'transcript':
|
| 123 |
+
if result['is_final']:
|
| 124 |
+
transcript = result['text']
|
| 125 |
+
break
|
| 126 |
+
elif result['type'] == 'done':
|
| 127 |
+
break
|
| 128 |
+
|
| 129 |
+
ws.close()
|
| 130 |
+
|
| 131 |
+
stt_time = time.time() - stt_start
|
| 132 |
+
logger.info(f'π Transcribed in {stt_time:.2f}s: "{transcript}"')
|
| 133 |
+
|
| 134 |
+
# ============ LLM (Language Model) ============
|
| 135 |
+
llm_start = time.time()
|
| 136 |
+
logger.debug("π§ Running agent...")
|
| 137 |
+
agent_response = agent.invoke(
|
| 138 |
+
{"messages": [{"role": "user", "content": transcript}]}, config=agent_config
|
| 139 |
+
)
|
| 140 |
+
response_text = agent_response["messages"][-1].content
|
| 141 |
+
llm_time = time.time() - llm_start
|
| 142 |
+
logger.info(f'π¬ Response in {llm_time:.2f}s: "{response_text}"')
|
| 143 |
+
|
| 144 |
+
# ============ TTS (Text-to-Speech) with Cartesia Sonic 3 ============
|
| 145 |
+
tts_start = time.time()
|
| 146 |
+
logger.debug("π Generating speech with Cartesia Sonic 3...")
|
| 147 |
+
|
| 148 |
+
# Clean markdown formatting for better TTS output
|
| 149 |
+
clean_text = response_text
|
| 150 |
+
# Remove asterisks (bold/italic markdown)
|
| 151 |
+
clean_text = re.sub(r'\*+', '', clean_text)
|
| 152 |
+
# Remove other common markdown symbols (including table separators)
|
| 153 |
+
clean_text = re.sub(r'[#_`]', '', clean_text)
|
| 154 |
+
# Remove dashes/hyphens used in tables and horizontal rules
|
| 155 |
+
clean_text = re.sub(r'-{2,}', ' ', clean_text) # Replace multiple dashes with space
|
| 156 |
+
# Remove pipe symbols used in markdown tables
|
| 157 |
+
clean_text = re.sub(r'\|', ' ', clean_text)
|
| 158 |
+
# Remove extra whitespace
|
| 159 |
+
clean_text = re.sub(r'\s+', ' ', clean_text).strip()
|
| 160 |
+
|
| 161 |
+
if clean_text != response_text:
|
| 162 |
+
logger.debug(f"Cleaned text for TTS: {clean_text}")
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
# Generate speech using Cartesia Sonic 3 TTS (streaming)
|
| 166 |
+
chunk_count = 0
|
| 167 |
+
chunk_iter = cartesia_client.tts.bytes(
|
| 168 |
+
model_id=CARTESIA_TTS_CONFIG["model_id"],
|
| 169 |
+
transcript=clean_text,
|
| 170 |
+
voice=CARTESIA_TTS_CONFIG["voice"],
|
| 171 |
+
output_format=CARTESIA_TTS_CONFIG["output_format"],
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Buffer to accumulate partial chunks
|
| 175 |
+
buffer = b""
|
| 176 |
+
element_size = 4 # float32 is 4 bytes
|
| 177 |
+
|
| 178 |
+
# Stream audio chunks and convert to FastRTC format
|
| 179 |
+
for chunk in chunk_iter:
|
| 180 |
+
# Accumulate chunks in buffer
|
| 181 |
+
buffer += chunk
|
| 182 |
+
|
| 183 |
+
# Process complete float32 samples
|
| 184 |
+
num_complete_samples = len(buffer) // element_size
|
| 185 |
+
if num_complete_samples > 0:
|
| 186 |
+
# Extract complete samples
|
| 187 |
+
complete_bytes = num_complete_samples * element_size
|
| 188 |
+
complete_buffer = buffer[:complete_bytes]
|
| 189 |
+
buffer = buffer[complete_bytes:] # Keep remainder for next iteration
|
| 190 |
+
|
| 191 |
+
# Convert to numpy array
|
| 192 |
+
audio_array = np.frombuffer(complete_buffer, dtype=np.float32)
|
| 193 |
+
chunk_count += 1
|
| 194 |
+
|
| 195 |
+
# Yield in FastRTC format: (sample_rate, audio_array)
|
| 196 |
+
yield (CARTESIA_TTS_CONFIG["output_format"]["sample_rate"], audio_array)
|
| 197 |
+
|
| 198 |
+
# Process any remaining bytes in buffer
|
| 199 |
+
if len(buffer) > 0:
|
| 200 |
+
# Pad to complete sample if needed
|
| 201 |
+
remainder = len(buffer) % element_size
|
| 202 |
+
if remainder != 0:
|
| 203 |
+
buffer += b'\x00' * (element_size - remainder)
|
| 204 |
+
|
| 205 |
+
if len(buffer) >= element_size:
|
| 206 |
+
audio_array = np.frombuffer(buffer, dtype=np.float32)
|
| 207 |
+
chunk_count += 1
|
| 208 |
+
yield (CARTESIA_TTS_CONFIG["output_format"]["sample_rate"], audio_array)
|
| 209 |
+
|
| 210 |
+
tts_time = time.time() - tts_start
|
| 211 |
+
total_time = time.time() - start_time
|
| 212 |
+
logger.info(f'β‘ Performance: STT={stt_time:.2f}s | LLM={llm_time:.2f}s | TTS={tts_time:.2f}s | Total={total_time:.2f}s | Chunks={chunk_count}')
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
logger.error(f"Error in Cartesia TTS generation: {str(e)}")
|
| 216 |
+
raise
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def create_stream() -> Stream:
|
| 220 |
+
"""
|
| 221 |
+
Create and configure a Stream instance with audio capabilities.
|
| 222 |
+
Optimized for low latency.
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
Stream: Configured FastRTC Stream instance
|
| 226 |
+
"""
|
| 227 |
+
return Stream(
|
| 228 |
+
modality="audio",
|
| 229 |
+
mode="send-receive",
|
| 230 |
+
handler=ReplyOnPause(
|
| 231 |
+
response,
|
| 232 |
+
algo_options=AlgoOptions(
|
| 233 |
+
speech_threshold=0.4, # Slightly lower for faster detection
|
| 234 |
+
),
|
| 235 |
+
),
|
| 236 |
+
)
|
| 237 |
|
| 238 |
|
| 239 |
if __name__ == "__main__":
|
| 240 |
+
parser = argparse.ArgumentParser(description="FastRTC Cartesia Voice Agent (Ultra-Low Latency)")
|
| 241 |
+
parser.add_argument(
|
| 242 |
+
"--phone",
|
| 243 |
+
action="store_true",
|
| 244 |
+
help="Launch with FastRTC phone interface (get a temp phone number)",
|
| 245 |
+
)
|
| 246 |
+
args = parser.parse_args()
|
| 247 |
+
|
| 248 |
+
stream = create_stream()
|
| 249 |
+
logger.info("π§ Stream handler configured")
|
| 250 |
+
|
| 251 |
+
if args.phone:
|
| 252 |
+
logger.info("π Launching with FastRTC phone interface...")
|
| 253 |
+
stream.fastphone()
|
| 254 |
+
else:
|
| 255 |
+
logger.info("π Launching with Gradio UI...")
|
| 256 |
+
stream.ui.launch()
|