Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| # --- Import your new agent --- | |
| from agent import GeminiAgent | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| MY_HF_USERNAME = "benjipeng" # Your Hugging Face username | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the GeminiAgent on them, submits all answers, | |
| and displays the results. This function is restricted to a specific user. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") | |
| if not profile: | |
| return "Please Login to Hugging Face with the button to run the evaluation.", None | |
| username = profile.username | |
| print(f"User logged in: {username}") | |
| # --- NEW: Restrict submission to a specific user --- | |
| if username != MY_HF_USERNAME: | |
| print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.") | |
| return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate your GeminiAgent | |
| # The agent will fail to initialize if the GEMINI_API_KEY secret is not set. | |
| print("Instantiating agent...") | |
| try: | |
| agent = GeminiAgent() | |
| except Exception as e: | |
| error_msg = f"Error initializing agent: {e}" | |
| print(error_msg) | |
| return error_msg, None | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(f"Code link for submission: {agent_code}") | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=20) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| error_msg = f"Error fetching questions: {e}" | |
| print(error_msg) | |
| return error_msg, None | |
| except requests.exceptions.JSONDecodeError as e: | |
| error_msg = f"Error decoding server response for questions: {e}" | |
| print(error_msg) | |
| print(f"Response text: {response.text[:500]}") | |
| return error_msg, None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks (No changes needed here) --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Gemini Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. This Space is configured to run a Gemini-1.5-Pro based agent. | |
| 2. Log in to your Hugging Face account using the button below. Submission is restricted to the Space owner. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, submit answers, and see the score. | |
| --- | |
| **Note:** The process can take several minutes as the agent answers each question individually. | |
| """ | |
| ) | |
| # The `gr.LoginButton()` passes the OAuthProfile to any function that accepts it as an argument | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| # The profile object from the LoginButton is automatically passed to the first argument of the function | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| demo.launch(debug=True, share=False) |