File size: 3,919 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
 
f291e6d
 
 
 
 
 
 
 
 
 
 
 
d76ea78
 
 
 
 
 
 
 
f291e6d
46fe09f
 
f291e6d
46fe09f
 
 
 
 
 
 
 
 
f291e6d
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
a598145
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"

@tool
def brief_text_in_n_sentences(text:str, n:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that succintly briefs a given text in 'n' number of sentences 
    Args:
        text: the text to be resumed into the given number of sentences
        n: the number of sentences to use to brief the text
    """

    if not text.strip():
        return "No text provided to summarize."
    
    # prompt = (
    #     f"Please summarize the following text in exactly {n} sentence{'s' if n > 1 else ''}. Each sentence is a bullet point. The text is:\n\n{text}\n\n"
    #     "Summary:"
    # )
    prompt = [
  {'role': 'user', 'content': [{'type': 'text', 'text': f'Please summarize the following text in exactly {n} sentence{"s" if n > 1 else ""}. Each sentence is a bullet point. The text is:\n\n{text}\n\n'}]}
]

    try:
        # response = model(prompt)
        # return response
        response = model(prompt)
        # If model returns a dictionary or list, handle accordingly
        if isinstance(response, dict) and "generated_text" in response:
            return response["generated_text"]
        elif isinstance(response, list) and "generated_text" in response[0]:
            return response[0]["generated_text"]
        elif isinstance(response, str):
            return response  # Already a string, nothing to do
        else:
            return f"Unexpected response format: {response}"
    except Exception as e:
        return f"LLM summarization failed: {str(e)}"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, brief_text_in_n_sentences, get_current_time_in_timezone, image_generation_tool], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()