Resolve merge conflict in data.py
Browse files- app.py +1 -1
- data.py +8 -3
- model_page.py +10 -10
- time_series.py +156 -108
- time_series_gradio.py +25 -53
app.py
CHANGED
|
@@ -216,7 +216,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css(), js=js_func)
|
|
| 216 |
x="date",
|
| 217 |
y="failure_rate",
|
| 218 |
color="platform",
|
| 219 |
-
color_map={"AMD": "#FF6B6B", "NVIDIA": "#
|
| 220 |
title="Overall Failure Rates Over Time",
|
| 221 |
tooltip=["failure_rate", "date", "change"],
|
| 222 |
height=300,
|
|
|
|
| 216 |
x="date",
|
| 217 |
y="failure_rate",
|
| 218 |
color="platform",
|
| 219 |
+
color_map={"AMD": "#FF6B6B", "NVIDIA": "#76B900"},
|
| 220 |
title="Overall Failure Rates Over Time",
|
| 221 |
tooltip=["failure_rate", "date", "change"],
|
| 222 |
height=300,
|
data.py
CHANGED
|
@@ -8,8 +8,8 @@ import json
|
|
| 8 |
import re
|
| 9 |
from typing import List, Tuple, Optional
|
| 10 |
|
| 11 |
-
# NOTE:
|
| 12 |
-
fs = HfFileSystem(
|
| 13 |
|
| 14 |
IMPORTANT_MODELS = [
|
| 15 |
"auto",
|
|
@@ -20,10 +20,13 @@ IMPORTANT_MODELS = [
|
|
| 20 |
"vit", # old (vision) - fixed comma
|
| 21 |
"clip", # old but dominant (vision)
|
| 22 |
"detr", # objection detection, segmentation (vision)
|
| 23 |
-
"
|
| 24 |
"got_ocr2", # ocr (vision)
|
| 25 |
"whisper", # old but dominant (audio)
|
| 26 |
"wav2vec2", # old (audio)
|
|
|
|
|
|
|
|
|
|
| 27 |
"llama", # new and dominant (meta)
|
| 28 |
"gemma3", # new (google)
|
| 29 |
"qwen2", # new (Alibaba)
|
|
@@ -34,6 +37,8 @@ IMPORTANT_MODELS = [
|
|
| 34 |
"internvl", # new (video)
|
| 35 |
"gemma3n", # new (omnimodal models)
|
| 36 |
"qwen2_5_omni", # new (omnimodal models)
|
|
|
|
|
|
|
| 37 |
]
|
| 38 |
|
| 39 |
KEYS_TO_KEEP = [
|
|
|
|
| 8 |
import re
|
| 9 |
from typing import List, Tuple, Optional
|
| 10 |
|
| 11 |
+
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
|
| 12 |
+
fs = HfFileSystem()
|
| 13 |
|
| 14 |
IMPORTANT_MODELS = [
|
| 15 |
"auto",
|
|
|
|
| 20 |
"vit", # old (vision) - fixed comma
|
| 21 |
"clip", # old but dominant (vision)
|
| 22 |
"detr", # objection detection, segmentation (vision)
|
| 23 |
+
"table_transformer", # objection detection (visioin) - maybe just detr?
|
| 24 |
"got_ocr2", # ocr (vision)
|
| 25 |
"whisper", # old but dominant (audio)
|
| 26 |
"wav2vec2", # old (audio)
|
| 27 |
+
"qwen2_audio", # (audio)
|
| 28 |
+
"speech_t5", # (audio)
|
| 29 |
+
"csm", # (audio)
|
| 30 |
"llama", # new and dominant (meta)
|
| 31 |
"gemma3", # new (google)
|
| 32 |
"qwen2", # new (Alibaba)
|
|
|
|
| 37 |
"internvl", # new (video)
|
| 38 |
"gemma3n", # new (omnimodal models)
|
| 39 |
"qwen2_5_omni", # new (omnimodal models)
|
| 40 |
+
# "gpt_oss", # new (quite used)
|
| 41 |
+
"qwen2_5_omni", # new (omnimodal models)
|
| 42 |
]
|
| 43 |
|
| 44 |
KEYS_TO_KEEP = [
|
model_page.py
CHANGED
|
@@ -42,11 +42,11 @@ def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) ->
|
|
| 42 |
"""Create a pie chart for device statistics."""
|
| 43 |
if not filtered_stats:
|
| 44 |
ax.text(0.5, 0.5, 'No test results',
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold',
|
| 49 |
-
|
| 50 |
ax.axis('off')
|
| 51 |
return
|
| 52 |
|
|
@@ -63,7 +63,7 @@ def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) ->
|
|
| 63 |
shadow=False,
|
| 64 |
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH), # Minimal borders
|
| 65 |
textprops={'fontsize': 12, 'weight': 'normal',
|
| 66 |
-
|
| 67 |
)
|
| 68 |
|
| 69 |
# Enhanced percentage text styling for better readability
|
|
@@ -82,7 +82,7 @@ def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) ->
|
|
| 82 |
|
| 83 |
# Device label closer to chart and bigger
|
| 84 |
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal',
|
| 85 |
-
|
| 86 |
|
| 87 |
|
| 88 |
def plot_model_stats(df: pd.DataFrame, model_name: str, historical_df: pd.DataFrame = None) -> tuple[plt.Figure, str, str]:
|
|
@@ -124,12 +124,12 @@ def plot_model_stats(df: pd.DataFrame, model_name: str, historical_df: pd.DataFr
|
|
| 124 |
# Add subtle separation line between charts - stops at device labels level
|
| 125 |
line_x = 0.5
|
| 126 |
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END],
|
| 127 |
-
|
| 128 |
-
|
| 129 |
|
| 130 |
# Add central shared title for model name
|
| 131 |
fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold',
|
| 132 |
-
|
| 133 |
|
| 134 |
# Clean layout with padding and space for central title
|
| 135 |
plt.tight_layout()
|
|
@@ -199,4 +199,4 @@ def prepare_textbox_content(failures: dict[str, list], device: str, data_availab
|
|
| 199 |
for test in multi_failures:
|
| 200 |
info_lines.append(format_failure_line(test, "multi"))
|
| 201 |
|
| 202 |
-
return "\n".join(info_lines)
|
|
|
|
| 42 |
"""Create a pie chart for device statistics."""
|
| 43 |
if not filtered_stats:
|
| 44 |
ax.text(0.5, 0.5, 'No test results',
|
| 45 |
+
horizontalalignment='center', verticalalignment='center',
|
| 46 |
+
transform=ax.transAxes, fontsize=14, color='#888888',
|
| 47 |
+
fontfamily='monospace', weight='normal')
|
| 48 |
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold',
|
| 49 |
+
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
|
| 50 |
ax.axis('off')
|
| 51 |
return
|
| 52 |
|
|
|
|
| 63 |
shadow=False,
|
| 64 |
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH), # Minimal borders
|
| 65 |
textprops={'fontsize': 12, 'weight': 'normal',
|
| 66 |
+
'color': LABEL_COLOR, 'fontfamily': 'monospace'}
|
| 67 |
)
|
| 68 |
|
| 69 |
# Enhanced percentage text styling for better readability
|
|
|
|
| 82 |
|
| 83 |
# Device label closer to chart and bigger
|
| 84 |
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal',
|
| 85 |
+
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
|
| 86 |
|
| 87 |
|
| 88 |
def plot_model_stats(df: pd.DataFrame, model_name: str, historical_df: pd.DataFrame = None) -> tuple[plt.Figure, str, str]:
|
|
|
|
| 124 |
# Add subtle separation line between charts - stops at device labels level
|
| 125 |
line_x = 0.5
|
| 126 |
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END],
|
| 127 |
+
color='#333333', linewidth=SEPARATOR_LINE_WIDTH,
|
| 128 |
+
alpha=SEPARATOR_ALPHA, transform=fig.transFigure))
|
| 129 |
|
| 130 |
# Add central shared title for model name
|
| 131 |
fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold',
|
| 132 |
+
color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y)
|
| 133 |
|
| 134 |
# Clean layout with padding and space for central title
|
| 135 |
plt.tight_layout()
|
|
|
|
| 199 |
for test in multi_failures:
|
| 200 |
info_lines.append(format_failure_line(test, "multi"))
|
| 201 |
|
| 202 |
+
return "\n".join(info_lines)
|
time_series.py
CHANGED
|
@@ -4,32 +4,29 @@ import numpy as np
|
|
| 4 |
from datetime import datetime
|
| 5 |
from data import extract_model_data
|
| 6 |
|
| 7 |
-
# Colors matching the existing theme
|
| 8 |
COLORS = {
|
| 9 |
'passed': '#4CAF50',
|
| 10 |
'failed': '#E53E3E',
|
| 11 |
'skipped': '#FFD54F',
|
| 12 |
-
'error': '#8B0000'
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
|
| 15 |
-
# Figure dimensions
|
| 16 |
FIGURE_WIDTH = 20
|
| 17 |
FIGURE_HEIGHT = 12
|
| 18 |
|
| 19 |
-
# Styling constants
|
| 20 |
BLACK = '#000000'
|
| 21 |
LABEL_COLOR = '#CCCCCC'
|
| 22 |
TITLE_COLOR = '#FFFFFF'
|
| 23 |
GRID_COLOR = '#333333'
|
| 24 |
|
| 25 |
-
# Font sizes
|
| 26 |
TITLE_FONT_SIZE = 24
|
| 27 |
LABEL_FONT_SIZE = 14
|
| 28 |
LEGEND_FONT_SIZE = 12
|
| 29 |
|
| 30 |
|
| 31 |
def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
| 32 |
-
"""Create time-series visualization for overall failure rates over time."""
|
| 33 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 34 |
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 35 |
ax.set_facecolor(BLACK)
|
|
@@ -40,23 +37,17 @@ def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
|
| 40 |
ax.axis('off')
|
| 41 |
return fig
|
| 42 |
|
| 43 |
-
# Convert date column to datetime
|
| 44 |
historical_df['date_dt'] = pd.to_datetime(historical_df['date'])
|
| 45 |
historical_df = historical_df.sort_values('date_dt')
|
| 46 |
|
| 47 |
-
# Group by date and calculate overall statistics
|
| 48 |
daily_stats = []
|
| 49 |
dates = []
|
| 50 |
|
| 51 |
for date in historical_df['date_dt'].unique():
|
| 52 |
date_data = historical_df[historical_df['date_dt'] == date]
|
| 53 |
|
| 54 |
-
total_amd_passed = 0
|
| 55 |
-
|
| 56 |
-
total_amd_skipped = 0
|
| 57 |
-
total_nvidia_passed = 0
|
| 58 |
-
total_nvidia_failed = 0
|
| 59 |
-
total_nvidia_skipped = 0
|
| 60 |
|
| 61 |
for _, row in date_data.iterrows():
|
| 62 |
amd_stats, nvidia_stats = extract_model_data(row)[:2]
|
|
@@ -64,12 +55,10 @@ def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
|
| 64 |
total_amd_passed += amd_stats['passed']
|
| 65 |
total_amd_failed += amd_stats['failed']
|
| 66 |
total_amd_skipped += amd_stats['skipped']
|
| 67 |
-
|
| 68 |
total_nvidia_passed += nvidia_stats['passed']
|
| 69 |
total_nvidia_failed += nvidia_stats['failed']
|
| 70 |
total_nvidia_skipped += nvidia_stats['skipped']
|
| 71 |
|
| 72 |
-
# Calculate failure rates
|
| 73 |
amd_total = total_amd_passed + total_amd_failed
|
| 74 |
nvidia_total = total_nvidia_passed + total_nvidia_failed
|
| 75 |
|
|
@@ -88,95 +77,113 @@ def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
|
| 88 |
})
|
| 89 |
dates.append(date)
|
| 90 |
|
| 91 |
-
|
| 92 |
-
fig
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
# Plot 1: Failure rates over time
|
| 98 |
dates_array = np.array(dates)
|
| 99 |
amd_rates = [stat['amd_failure_rate'] for stat in daily_stats]
|
| 100 |
nvidia_rates = [stat['nvidia_failure_rate'] for stat in daily_stats]
|
| 101 |
|
| 102 |
-
ax1.
|
| 103 |
-
ax1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
ax1.set_title('Overall Failure Rates Over Time', fontsize=TITLE_FONT_SIZE,
|
| 106 |
-
fontfamily='monospace', fontweight='bold', pad=20)
|
| 107 |
ax1.set_ylabel('Failure Rate (%)', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 108 |
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 109 |
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 110 |
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
|
|
|
| 111 |
|
| 112 |
-
# Format x-axis
|
| 113 |
-
ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE)
|
| 114 |
-
ax1.xaxis.label.set_color(LABEL_COLOR)
|
| 115 |
-
ax1.yaxis.label.set_color(LABEL_COLOR)
|
| 116 |
-
|
| 117 |
-
# Plot 2: AMD Test counts over time (stacked area chart)
|
| 118 |
amd_passed = [stat['amd_passed'] for stat in daily_stats]
|
| 119 |
amd_failed = [stat['amd_failed'] for stat in daily_stats]
|
| 120 |
amd_skipped = [stat['amd_skipped'] for stat in daily_stats]
|
| 121 |
|
| 122 |
-
ax2.
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
ax2.fill_between(dates_array, np.array(amd_passed) + np.array(amd_failed),
|
| 126 |
-
np.array(amd_passed) + np.array(amd_failed) + np.array(amd_skipped),
|
| 127 |
-
color=COLORS['skipped'], alpha=0.7, label='Skipped')
|
| 128 |
|
| 129 |
-
ax2.set_title('AMD Test Results
|
| 130 |
-
fontfamily='monospace', fontweight='bold', pad=
|
| 131 |
-
ax2.set_ylabel('
|
| 132 |
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 133 |
-
ax2.
|
| 134 |
-
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 135 |
-
|
| 136 |
-
# Format x-axis
|
| 137 |
-
ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE)
|
| 138 |
-
ax2.xaxis.label.set_color(LABEL_COLOR)
|
| 139 |
-
ax2.yaxis.label.set_color(LABEL_COLOR)
|
| 140 |
|
| 141 |
-
# Plot 3: NVIDIA Test counts over time (stacked area chart)
|
| 142 |
nvidia_passed = [stat['nvidia_passed'] for stat in daily_stats]
|
| 143 |
nvidia_failed = [stat['nvidia_failed'] for stat in daily_stats]
|
| 144 |
nvidia_skipped = [stat['nvidia_skipped'] for stat in daily_stats]
|
| 145 |
|
| 146 |
-
ax3.
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
ax3.fill_between(dates_array, np.array(nvidia_passed) + np.array(nvidia_failed),
|
| 150 |
-
np.array(nvidia_passed) + np.array(nvidia_failed) + np.array(nvidia_skipped),
|
| 151 |
-
color=COLORS['skipped'], alpha=0.7, label='Skipped')
|
| 152 |
|
| 153 |
-
ax3.set_title('NVIDIA Test Results
|
| 154 |
-
fontfamily='monospace', fontweight='bold', pad=
|
| 155 |
-
ax3.set_ylabel('
|
| 156 |
ax3.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 157 |
ax3.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 158 |
-
ax3.
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
# Close any existing figures to prevent memory issues
|
| 173 |
plt.close('all')
|
| 174 |
-
|
| 175 |
return fig
|
| 176 |
|
| 177 |
|
| 178 |
def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> plt.Figure:
|
| 179 |
-
"""Create time-series visualization for a specific model."""
|
| 180 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 181 |
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 182 |
ax.set_facecolor(BLACK)
|
|
@@ -187,7 +194,6 @@ def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> pl
|
|
| 187 |
ax.axis('off')
|
| 188 |
return fig
|
| 189 |
|
| 190 |
-
# Filter data for the specific model
|
| 191 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 192 |
|
| 193 |
if model_data.empty:
|
|
@@ -200,12 +206,10 @@ def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> pl
|
|
| 200 |
ax.axis('off')
|
| 201 |
return fig
|
| 202 |
|
| 203 |
-
# Convert date column to datetime and sort
|
| 204 |
model_data = model_data.copy()
|
| 205 |
model_data['date_dt'] = pd.to_datetime(model_data['date'])
|
| 206 |
model_data = model_data.sort_values('date_dt')
|
| 207 |
|
| 208 |
-
# Extract statistics for each date
|
| 209 |
dates = model_data['date_dt'].values
|
| 210 |
amd_stats_list = []
|
| 211 |
nvidia_stats_list = []
|
|
@@ -215,54 +219,98 @@ def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> pl
|
|
| 215 |
amd_stats_list.append(amd_stats)
|
| 216 |
nvidia_stats_list.append(nvidia_stats)
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
-
# Plot 1: AMD results over time
|
| 224 |
amd_passed = [stats['passed'] for stats in amd_stats_list]
|
| 225 |
amd_failed = [stats['failed'] for stats in amd_stats_list]
|
| 226 |
amd_skipped = [stats['skipped'] for stats in amd_stats_list]
|
| 227 |
|
| 228 |
-
ax1.
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
ax1.set_title(f'{model_name.upper()} - AMD Results
|
| 233 |
-
fontfamily='monospace', fontweight='bold', pad=20)
|
| 234 |
ax1.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 235 |
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 236 |
-
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper
|
| 237 |
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
|
|
|
| 238 |
|
| 239 |
-
# Plot 2: NVIDIA results over time
|
| 240 |
nvidia_passed = [stats['passed'] for stats in nvidia_stats_list]
|
| 241 |
nvidia_failed = [stats['failed'] for stats in nvidia_stats_list]
|
| 242 |
nvidia_skipped = [stats['skipped'] for stats in nvidia_stats_list]
|
| 243 |
|
| 244 |
-
ax2.
|
| 245 |
-
|
| 246 |
-
|
| 247 |
|
| 248 |
-
ax2.
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
ax2.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 251 |
ax2.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 252 |
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 253 |
-
ax2.
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
-
# Close any existing figures to prevent memory issues
|
| 266 |
plt.close('all')
|
| 267 |
-
|
| 268 |
-
return fig
|
|
|
|
| 4 |
from datetime import datetime
|
| 5 |
from data import extract_model_data
|
| 6 |
|
|
|
|
| 7 |
COLORS = {
|
| 8 |
'passed': '#4CAF50',
|
| 9 |
'failed': '#E53E3E',
|
| 10 |
'skipped': '#FFD54F',
|
| 11 |
+
'error': '#8B0000',
|
| 12 |
+
'amd': '#ED1C24',
|
| 13 |
+
'nvidia': '#76B900'
|
| 14 |
}
|
| 15 |
|
|
|
|
| 16 |
FIGURE_WIDTH = 20
|
| 17 |
FIGURE_HEIGHT = 12
|
| 18 |
|
|
|
|
| 19 |
BLACK = '#000000'
|
| 20 |
LABEL_COLOR = '#CCCCCC'
|
| 21 |
TITLE_COLOR = '#FFFFFF'
|
| 22 |
GRID_COLOR = '#333333'
|
| 23 |
|
|
|
|
| 24 |
TITLE_FONT_SIZE = 24
|
| 25 |
LABEL_FONT_SIZE = 14
|
| 26 |
LEGEND_FONT_SIZE = 12
|
| 27 |
|
| 28 |
|
| 29 |
def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
|
|
|
| 30 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 31 |
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 32 |
ax.set_facecolor(BLACK)
|
|
|
|
| 37 |
ax.axis('off')
|
| 38 |
return fig
|
| 39 |
|
|
|
|
| 40 |
historical_df['date_dt'] = pd.to_datetime(historical_df['date'])
|
| 41 |
historical_df = historical_df.sort_values('date_dt')
|
| 42 |
|
|
|
|
| 43 |
daily_stats = []
|
| 44 |
dates = []
|
| 45 |
|
| 46 |
for date in historical_df['date_dt'].unique():
|
| 47 |
date_data = historical_df[historical_df['date_dt'] == date]
|
| 48 |
|
| 49 |
+
total_amd_passed = total_amd_failed = total_amd_skipped = 0
|
| 50 |
+
total_nvidia_passed = total_nvidia_failed = total_nvidia_skipped = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
for _, row in date_data.iterrows():
|
| 53 |
amd_stats, nvidia_stats = extract_model_data(row)[:2]
|
|
|
|
| 55 |
total_amd_passed += amd_stats['passed']
|
| 56 |
total_amd_failed += amd_stats['failed']
|
| 57 |
total_amd_skipped += amd_stats['skipped']
|
|
|
|
| 58 |
total_nvidia_passed += nvidia_stats['passed']
|
| 59 |
total_nvidia_failed += nvidia_stats['failed']
|
| 60 |
total_nvidia_skipped += nvidia_stats['skipped']
|
| 61 |
|
|
|
|
| 62 |
amd_total = total_amd_passed + total_amd_failed
|
| 63 |
nvidia_total = total_nvidia_passed + total_nvidia_failed
|
| 64 |
|
|
|
|
| 77 |
})
|
| 78 |
dates.append(date)
|
| 79 |
|
| 80 |
+
fig = plt.figure(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT + 4), facecolor=BLACK)
|
| 81 |
+
gs = fig.add_gridspec(3, 2, height_ratios=[1.2, 1, 1], width_ratios=[2, 1],
|
| 82 |
+
hspace=0.3, wspace=0.25)
|
| 83 |
+
|
| 84 |
+
ax1 = fig.add_subplot(gs[0, :])
|
| 85 |
+
ax2 = fig.add_subplot(gs[1, 0])
|
| 86 |
+
ax3 = fig.add_subplot(gs[2, 0])
|
| 87 |
+
ax4 = fig.add_subplot(gs[1:, 1])
|
| 88 |
+
|
| 89 |
+
for ax in [ax1, ax2, ax3, ax4]:
|
| 90 |
+
ax.set_facecolor(BLACK)
|
| 91 |
|
|
|
|
| 92 |
dates_array = np.array(dates)
|
| 93 |
amd_rates = [stat['amd_failure_rate'] for stat in daily_stats]
|
| 94 |
nvidia_rates = [stat['nvidia_failure_rate'] for stat in daily_stats]
|
| 95 |
|
| 96 |
+
ax1.fill_between(dates_array, 0, amd_rates, color=COLORS['amd'], alpha=0.15)
|
| 97 |
+
ax1.fill_between(dates_array, 0, nvidia_rates, color=COLORS['nvidia'], alpha=0.15)
|
| 98 |
+
ax1.plot(dates_array, amd_rates, color=COLORS['amd'], linewidth=3,
|
| 99 |
+
label='AMD', marker='o', markersize=7, markeredgewidth=2, markeredgecolor=BLACK)
|
| 100 |
+
ax1.plot(dates_array, nvidia_rates, color=COLORS['nvidia'], linewidth=3,
|
| 101 |
+
label='NVIDIA', marker='s', markersize=7, markeredgewidth=2, markeredgecolor=BLACK)
|
| 102 |
+
|
| 103 |
+
if len(amd_rates) > 2:
|
| 104 |
+
z_amd = np.polyfit(range(len(amd_rates)), amd_rates, 1)
|
| 105 |
+
p_amd = np.poly1d(z_amd)
|
| 106 |
+
ax1.plot(dates_array, p_amd(range(len(amd_rates))),
|
| 107 |
+
color=COLORS['amd'], linestyle='--', alpha=0.5, linewidth=2)
|
| 108 |
+
|
| 109 |
+
z_nvidia = np.polyfit(range(len(nvidia_rates)), nvidia_rates, 1)
|
| 110 |
+
p_nvidia = np.poly1d(z_nvidia)
|
| 111 |
+
ax1.plot(dates_array, p_nvidia(range(len(nvidia_rates))),
|
| 112 |
+
color=COLORS['nvidia'], linestyle='--', alpha=0.5, linewidth=2)
|
| 113 |
|
| 114 |
+
ax1.set_title('Overall Failure Rates Over Time', fontsize=TITLE_FONT_SIZE,
|
| 115 |
+
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
|
| 116 |
ax1.set_ylabel('Failure Rate (%)', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 117 |
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 118 |
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 119 |
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 120 |
+
ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
amd_passed = [stat['amd_passed'] for stat in daily_stats]
|
| 123 |
amd_failed = [stat['amd_failed'] for stat in daily_stats]
|
| 124 |
amd_skipped = [stat['amd_skipped'] for stat in daily_stats]
|
| 125 |
|
| 126 |
+
ax2.stackplot(dates_array, amd_passed, amd_failed, amd_skipped,
|
| 127 |
+
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 128 |
+
alpha=0.8, labels=['Passed', 'Failed', 'Skipped'])
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
ax2.set_title('AMD Test Results', fontsize=TITLE_FONT_SIZE - 2,
|
| 131 |
+
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=15)
|
| 132 |
+
ax2.set_ylabel('Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 133 |
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 134 |
+
ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE - 1, axis='x', rotation=45)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
|
|
|
| 136 |
nvidia_passed = [stat['nvidia_passed'] for stat in daily_stats]
|
| 137 |
nvidia_failed = [stat['nvidia_failed'] for stat in daily_stats]
|
| 138 |
nvidia_skipped = [stat['nvidia_skipped'] for stat in daily_stats]
|
| 139 |
|
| 140 |
+
ax3.stackplot(dates_array, nvidia_passed, nvidia_failed, nvidia_skipped,
|
| 141 |
+
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 142 |
+
alpha=0.8, labels=['Passed', 'Failed', 'Skipped'])
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
ax3.set_title('NVIDIA Test Results', fontsize=TITLE_FONT_SIZE - 2,
|
| 145 |
+
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=15)
|
| 146 |
+
ax3.set_ylabel('Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 147 |
ax3.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 148 |
ax3.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 149 |
+
ax3.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE - 1, axis='x', rotation=45)
|
| 150 |
+
|
| 151 |
+
latest = daily_stats[-1]
|
| 152 |
+
metrics = [
|
| 153 |
+
('Latest AMD Failure Rate', f"{latest['amd_failure_rate']:.1f}%", COLORS['amd']),
|
| 154 |
+
('Latest NVIDIA Failure Rate', f"{latest['nvidia_failure_rate']:.1f}%", COLORS['nvidia']),
|
| 155 |
+
('', '', None),
|
| 156 |
+
('Total AMD Tests', str(latest['amd_passed'] + latest['amd_failed'] + latest['amd_skipped']), '#888888'),
|
| 157 |
+
('Total NVIDIA Tests', str(latest['nvidia_passed'] + latest['nvidia_failed'] + latest['nvidia_skipped']), '#888888'),
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
ax4.axis('off')
|
| 161 |
+
y_pos = 0.9
|
| 162 |
+
ax4.text(0.5, 0.95, 'SUMMARY', ha='center', va='top', fontsize=TITLE_FONT_SIZE - 2,
|
| 163 |
+
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold',
|
| 164 |
+
transform=ax4.transAxes)
|
| 165 |
+
|
| 166 |
+
for label, value, color in metrics:
|
| 167 |
+
if label:
|
| 168 |
+
ax4.text(0.1, y_pos, label, ha='left', va='center', fontsize=LABEL_FONT_SIZE,
|
| 169 |
+
color=LABEL_COLOR, fontfamily='monospace', transform=ax4.transAxes)
|
| 170 |
+
ax4.text(0.9, y_pos, value, ha='right', va='center', fontsize=LABEL_FONT_SIZE + 2,
|
| 171 |
+
color=color or LABEL_COLOR, fontfamily='monospace', fontweight='bold',
|
| 172 |
+
transform=ax4.transAxes)
|
| 173 |
+
y_pos -= 0.15
|
| 174 |
+
|
| 175 |
+
handles = [plt.Rectangle((0,0),1,1, fc=COLORS['passed'], alpha=0.8),
|
| 176 |
+
plt.Rectangle((0,0),1,1, fc=COLORS['failed'], alpha=0.8),
|
| 177 |
+
plt.Rectangle((0,0),1,1, fc=COLORS['skipped'], alpha=0.8)]
|
| 178 |
+
ax4.legend(handles, ['Passed', 'Failed', 'Skipped'],
|
| 179 |
+
loc='lower center', fontsize=LEGEND_FONT_SIZE,
|
| 180 |
+
frameon=False, labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 181 |
|
|
|
|
| 182 |
plt.close('all')
|
|
|
|
| 183 |
return fig
|
| 184 |
|
| 185 |
|
| 186 |
def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> plt.Figure:
|
|
|
|
| 187 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 188 |
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 189 |
ax.set_facecolor(BLACK)
|
|
|
|
| 194 |
ax.axis('off')
|
| 195 |
return fig
|
| 196 |
|
|
|
|
| 197 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 198 |
|
| 199 |
if model_data.empty:
|
|
|
|
| 206 |
ax.axis('off')
|
| 207 |
return fig
|
| 208 |
|
|
|
|
| 209 |
model_data = model_data.copy()
|
| 210 |
model_data['date_dt'] = pd.to_datetime(model_data['date'])
|
| 211 |
model_data = model_data.sort_values('date_dt')
|
| 212 |
|
|
|
|
| 213 |
dates = model_data['date_dt'].values
|
| 214 |
amd_stats_list = []
|
| 215 |
nvidia_stats_list = []
|
|
|
|
| 219 |
amd_stats_list.append(amd_stats)
|
| 220 |
nvidia_stats_list.append(nvidia_stats)
|
| 221 |
|
| 222 |
+
fig = plt.figure(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 223 |
+
gs = fig.add_gridspec(2, 2, height_ratios=[1, 1], width_ratios=[3, 1],
|
| 224 |
+
hspace=0.3, wspace=0.2)
|
| 225 |
+
|
| 226 |
+
ax1 = fig.add_subplot(gs[0, 0])
|
| 227 |
+
ax2 = fig.add_subplot(gs[1, 0])
|
| 228 |
+
ax3 = fig.add_subplot(gs[:, 1])
|
| 229 |
+
|
| 230 |
+
for ax in [ax1, ax2, ax3]:
|
| 231 |
+
ax.set_facecolor(BLACK)
|
| 232 |
|
|
|
|
| 233 |
amd_passed = [stats['passed'] for stats in amd_stats_list]
|
| 234 |
amd_failed = [stats['failed'] for stats in amd_stats_list]
|
| 235 |
amd_skipped = [stats['skipped'] for stats in amd_stats_list]
|
| 236 |
|
| 237 |
+
ax1.stackplot(dates, amd_passed, amd_failed, amd_skipped,
|
| 238 |
+
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 239 |
+
alpha=0.7, labels=['Passed', 'Failed', 'Skipped'])
|
| 240 |
+
|
| 241 |
+
ax1.plot(dates, amd_failed, color=COLORS['failed'], linewidth=2.5,
|
| 242 |
+
marker='o', markersize=7, markeredgewidth=2, markeredgecolor=BLACK,
|
| 243 |
+
linestyle='-', label='_nolegend_')
|
| 244 |
|
| 245 |
+
ax1.set_title(f'{model_name.upper()} - AMD Results', fontsize=TITLE_FONT_SIZE,
|
| 246 |
+
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
|
| 247 |
ax1.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 248 |
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 249 |
+
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper left', frameon=False,
|
| 250 |
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 251 |
+
ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
|
| 252 |
|
|
|
|
| 253 |
nvidia_passed = [stats['passed'] for stats in nvidia_stats_list]
|
| 254 |
nvidia_failed = [stats['failed'] for stats in nvidia_stats_list]
|
| 255 |
nvidia_skipped = [stats['skipped'] for stats in nvidia_stats_list]
|
| 256 |
|
| 257 |
+
ax2.stackplot(dates, nvidia_passed, nvidia_failed, nvidia_skipped,
|
| 258 |
+
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 259 |
+
alpha=0.7, labels=['Passed', 'Failed', 'Skipped'])
|
| 260 |
|
| 261 |
+
ax2.plot(dates, nvidia_failed, color=COLORS['failed'], linewidth=2.5,
|
| 262 |
+
marker='s', markersize=7, markeredgewidth=2, markeredgecolor=BLACK,
|
| 263 |
+
linestyle='-', label='_nolegend_')
|
| 264 |
+
|
| 265 |
+
ax2.set_title(f'{model_name.upper()} - NVIDIA Results', fontsize=TITLE_FONT_SIZE,
|
| 266 |
+
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
|
| 267 |
ax2.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 268 |
ax2.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 269 |
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 270 |
+
ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
|
| 271 |
+
|
| 272 |
+
ax3.axis('off')
|
| 273 |
+
latest_amd = amd_stats_list[-1]
|
| 274 |
+
latest_nvidia = nvidia_stats_list[-1]
|
| 275 |
+
|
| 276 |
+
amd_total = latest_amd['passed'] + latest_amd['failed']
|
| 277 |
+
nvidia_total = latest_nvidia['passed'] + latest_nvidia['failed']
|
| 278 |
+
amd_fail_rate = (latest_amd['failed'] / amd_total * 100) if amd_total > 0 else 0
|
| 279 |
+
nvidia_fail_rate = (latest_nvidia['failed'] / nvidia_total * 100) if nvidia_total > 0 else 0
|
| 280 |
+
|
| 281 |
+
ax3.text(0.5, 0.95, 'LATEST RESULTS', ha='center', va='top',
|
| 282 |
+
fontsize=TITLE_FONT_SIZE - 4, color=TITLE_COLOR, fontfamily='monospace',
|
| 283 |
+
fontweight='bold', transform=ax3.transAxes)
|
| 284 |
+
|
| 285 |
+
y = 0.80
|
| 286 |
+
sections = [
|
| 287 |
+
('AMD', [
|
| 288 |
+
('Pass Rate', f"{(latest_amd['passed']/amd_total*100) if amd_total > 0 else 0:.1f}%", COLORS['passed']),
|
| 289 |
+
('Fail Rate', f"{amd_fail_rate:.1f}%", COLORS['failed']),
|
| 290 |
+
('Total', str(latest_amd['passed'] + latest_amd['failed'] + latest_amd['skipped']), '#888888'),
|
| 291 |
+
]),
|
| 292 |
+
('NVIDIA', [
|
| 293 |
+
('Pass Rate', f"{(latest_nvidia['passed']/nvidia_total*100) if nvidia_total > 0 else 0:.1f}%", COLORS['passed']),
|
| 294 |
+
('Fail Rate', f"{nvidia_fail_rate:.1f}%", COLORS['failed']),
|
| 295 |
+
('Total', str(latest_nvidia['passed'] + latest_nvidia['failed'] + latest_nvidia['skipped']), '#888888'),
|
| 296 |
+
])
|
| 297 |
+
]
|
| 298 |
+
|
| 299 |
+
for section_name, metrics in sections:
|
| 300 |
+
ax3.text(0.5, y, section_name, ha='center', va='center',
|
| 301 |
+
fontsize=LABEL_FONT_SIZE + 2, color=TITLE_COLOR,
|
| 302 |
+
fontfamily='monospace', fontweight='bold', transform=ax3.transAxes)
|
| 303 |
+
y -= 0.08
|
| 304 |
+
|
| 305 |
+
for label, value, color in metrics:
|
| 306 |
+
ax3.text(0.15, y, label, ha='left', va='center',
|
| 307 |
+
fontsize=LABEL_FONT_SIZE - 1, color=LABEL_COLOR,
|
| 308 |
+
fontfamily='monospace', transform=ax3.transAxes)
|
| 309 |
+
ax3.text(0.85, y, value, ha='right', va='center',
|
| 310 |
+
fontsize=LABEL_FONT_SIZE, color=color,
|
| 311 |
+
fontfamily='monospace', fontweight='bold', transform=ax3.transAxes)
|
| 312 |
+
y -= 0.07
|
| 313 |
+
y -= 0.05
|
| 314 |
|
|
|
|
| 315 |
plt.close('all')
|
| 316 |
+
return fig
|
|
|
time_series_gradio.py
CHANGED
|
@@ -4,10 +4,16 @@ from datetime import datetime
|
|
| 4 |
from data import extract_model_data
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
daily_stats = []
|
| 12 |
dates = sorted(historical_df['date'].unique())
|
| 13 |
for date in dates:
|
|
@@ -36,7 +42,6 @@ def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
|
| 36 |
'nvidia_skipped': nvidia_skipped
|
| 37 |
})
|
| 38 |
|
| 39 |
-
# Failure rate dataframe
|
| 40 |
failure_rate_data = []
|
| 41 |
for i, stat in enumerate(daily_stats):
|
| 42 |
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0
|
|
@@ -47,7 +52,6 @@ def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
|
| 47 |
])
|
| 48 |
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 49 |
|
| 50 |
-
# AMD tests dataframe
|
| 51 |
amd_data = []
|
| 52 |
for i, stat in enumerate(daily_stats):
|
| 53 |
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
|
|
@@ -60,7 +64,6 @@ def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
|
| 60 |
])
|
| 61 |
amd_df = pd.DataFrame(amd_data)
|
| 62 |
|
| 63 |
-
# NVIDIA tests dataframe
|
| 64 |
nvidia_data = []
|
| 65 |
for i, stat in enumerate(daily_stats):
|
| 66 |
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0
|
|
@@ -80,7 +83,6 @@ def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
|
| 80 |
}
|
| 81 |
|
| 82 |
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 83 |
-
"""Return dataframes for a specific model's historical plots (AMD, NVIDIA)."""
|
| 84 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 85 |
|
| 86 |
if model_data.empty:
|
|
@@ -125,9 +127,7 @@ def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> d
|
|
| 125 |
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)}
|
| 126 |
|
| 127 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 128 |
-
"""Create time-series visualization for overall failure rates over time using Gradio native plots."""
|
| 129 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 130 |
-
# Return empty plots
|
| 131 |
empty_df = pd.DataFrame({'date': [], 'failure_rate': [], 'platform': []})
|
| 132 |
return {
|
| 133 |
'failure_rates': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["failure_rate", "date", "change"]),
|
|
@@ -135,21 +135,18 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 135 |
'nvidia_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"])
|
| 136 |
}
|
| 137 |
|
| 138 |
-
# Group by date to get daily statistics
|
| 139 |
daily_stats = []
|
| 140 |
dates = sorted(historical_df['date'].unique())
|
| 141 |
|
| 142 |
for date in dates:
|
| 143 |
date_data = historical_df[historical_df['date'] == date]
|
| 144 |
|
| 145 |
-
# Calculate AMD stats - use the correct column names from the data structure
|
| 146 |
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
|
| 147 |
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
|
| 148 |
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
|
| 149 |
amd_total = amd_passed + amd_failed + amd_skipped
|
| 150 |
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
|
| 151 |
|
| 152 |
-
# Calculate NVIDIA stats - use the correct column names from the data structure
|
| 153 |
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
|
| 154 |
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
|
| 155 |
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
|
|
@@ -168,12 +165,9 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 168 |
'nvidia_skipped': nvidia_skipped
|
| 169 |
})
|
| 170 |
|
| 171 |
-
# Create failure rate data
|
| 172 |
failure_rate_data = []
|
| 173 |
for i, stat in enumerate(daily_stats):
|
| 174 |
-
|
| 175 |
-
amd_change = 0
|
| 176 |
-
nvidia_change = 0
|
| 177 |
if i > 0:
|
| 178 |
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate']
|
| 179 |
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate']
|
|
@@ -185,13 +179,9 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 185 |
|
| 186 |
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 187 |
|
| 188 |
-
# Create AMD test results data
|
| 189 |
amd_data = []
|
| 190 |
for i, stat in enumerate(daily_stats):
|
| 191 |
-
|
| 192 |
-
passed_change = 0
|
| 193 |
-
failed_change = 0
|
| 194 |
-
skipped_change = 0
|
| 195 |
if i > 0:
|
| 196 |
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed']
|
| 197 |
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed']
|
|
@@ -205,13 +195,9 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 205 |
|
| 206 |
amd_df = pd.DataFrame(amd_data)
|
| 207 |
|
| 208 |
-
# Create NVIDIA test results data
|
| 209 |
nvidia_data = []
|
| 210 |
for i, stat in enumerate(daily_stats):
|
| 211 |
-
|
| 212 |
-
passed_change = 0
|
| 213 |
-
failed_change = 0
|
| 214 |
-
skipped_change = 0
|
| 215 |
if i > 0:
|
| 216 |
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed']
|
| 217 |
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed']
|
|
@@ -231,10 +217,10 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 231 |
x="date",
|
| 232 |
y="failure_rate",
|
| 233 |
color="platform",
|
| 234 |
-
color_map={"AMD":
|
| 235 |
title="Overall Failure Rates Over Time",
|
| 236 |
tooltip=["failure_rate", "date", "change"],
|
| 237 |
-
height=
|
| 238 |
x_label_angle=45,
|
| 239 |
y_title="Failure Rate (%)"
|
| 240 |
),
|
|
@@ -243,10 +229,10 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 243 |
x="date",
|
| 244 |
y="count",
|
| 245 |
color="test_type",
|
| 246 |
-
color_map={"Passed":
|
| 247 |
title="AMD Test Results Over Time",
|
| 248 |
tooltip=["count", "date", "change"],
|
| 249 |
-
height=
|
| 250 |
x_label_angle=45,
|
| 251 |
y_title="Number of Tests"
|
| 252 |
),
|
|
@@ -255,10 +241,10 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 255 |
x="date",
|
| 256 |
y="count",
|
| 257 |
color="test_type",
|
| 258 |
-
color_map={"Passed":
|
| 259 |
title="NVIDIA Test Results Over Time",
|
| 260 |
tooltip=["count", "date", "change"],
|
| 261 |
-
height=
|
| 262 |
x_label_angle=45,
|
| 263 |
y_title="Number of Tests"
|
| 264 |
)
|
|
@@ -266,27 +252,22 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 266 |
|
| 267 |
|
| 268 |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 269 |
-
"""Create time-series visualization for a specific model using Gradio native plots."""
|
| 270 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 271 |
-
# Return empty plots
|
| 272 |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
|
| 273 |
return {
|
| 274 |
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
|
| 275 |
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
|
| 276 |
}
|
| 277 |
|
| 278 |
-
# Filter data for the specific model (model_name is the index)
|
| 279 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 280 |
|
| 281 |
if model_data.empty:
|
| 282 |
-
# Return empty plots
|
| 283 |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
|
| 284 |
return {
|
| 285 |
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
|
| 286 |
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
|
| 287 |
}
|
| 288 |
|
| 289 |
-
# Group by date
|
| 290 |
dates = sorted(model_data['date'].unique())
|
| 291 |
|
| 292 |
amd_data = []
|
|
@@ -296,18 +277,13 @@ def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str
|
|
| 296 |
date_data = model_data[model_data['date'] == date]
|
| 297 |
|
| 298 |
if not date_data.empty:
|
| 299 |
-
# Get the first row for this date (should be only one)
|
| 300 |
row = date_data.iloc[0]
|
| 301 |
|
| 302 |
-
# AMD data - use the correct column names from the data structure
|
| 303 |
amd_passed = row.get('success_amd', 0)
|
| 304 |
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
|
| 305 |
amd_skipped = row.get('skipped_amd', 0)
|
| 306 |
|
| 307 |
-
|
| 308 |
-
passed_change = 0
|
| 309 |
-
failed_change = 0
|
| 310 |
-
skipped_change = 0
|
| 311 |
if i > 0:
|
| 312 |
prev_date_data = model_data[model_data['date'] == dates[i-1]]
|
| 313 |
if not prev_date_data.empty:
|
|
@@ -326,15 +302,11 @@ def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str
|
|
| 326 |
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change}
|
| 327 |
])
|
| 328 |
|
| 329 |
-
# NVIDIA data - use the correct column names from the data structure
|
| 330 |
nvidia_passed = row.get('success_nvidia', 0)
|
| 331 |
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
|
| 332 |
nvidia_skipped = row.get('skipped_nvidia', 0)
|
| 333 |
|
| 334 |
-
|
| 335 |
-
nvidia_passed_change = 0
|
| 336 |
-
nvidia_failed_change = 0
|
| 337 |
-
nvidia_skipped_change = 0
|
| 338 |
if i > 0:
|
| 339 |
prev_date_data = model_data[model_data['date'] == dates[i-1]]
|
| 340 |
if not prev_date_data.empty:
|
|
@@ -362,11 +334,11 @@ def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str
|
|
| 362 |
x="date",
|
| 363 |
y="count",
|
| 364 |
color="test_type",
|
| 365 |
-
color_map={"Passed":
|
| 366 |
title=f"{model_name.upper()} - AMD Results Over Time",
|
| 367 |
x_label_angle=45,
|
| 368 |
y_title="Number of Tests",
|
| 369 |
-
height=
|
| 370 |
tooltip=["count", "date", "change"]
|
| 371 |
),
|
| 372 |
'nvidia_plot': gr.LinePlot(
|
|
@@ -374,11 +346,11 @@ def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str
|
|
| 374 |
x="date",
|
| 375 |
y="count",
|
| 376 |
color="test_type",
|
| 377 |
-
color_map={"Passed":
|
| 378 |
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 379 |
x_label_angle=45,
|
| 380 |
y_title="Number of Tests",
|
| 381 |
-
height=
|
| 382 |
tooltip=["count", "date", "change"]
|
| 383 |
)
|
| 384 |
-
}
|
|
|
|
| 4 |
from data import extract_model_data
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
COLORS = {
|
| 8 |
+
'passed': '#4CAF50',
|
| 9 |
+
'failed': '#E53E3E',
|
| 10 |
+
'skipped': '#FFD54F',
|
| 11 |
+
'error': '#8B0000',
|
| 12 |
+
'amd': '#ED1C24',
|
| 13 |
+
'nvidia': '#76B900'
|
| 14 |
+
}
|
| 15 |
|
| 16 |
+
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
| 17 |
daily_stats = []
|
| 18 |
dates = sorted(historical_df['date'].unique())
|
| 19 |
for date in dates:
|
|
|
|
| 42 |
'nvidia_skipped': nvidia_skipped
|
| 43 |
})
|
| 44 |
|
|
|
|
| 45 |
failure_rate_data = []
|
| 46 |
for i, stat in enumerate(daily_stats):
|
| 47 |
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0
|
|
|
|
| 52 |
])
|
| 53 |
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 54 |
|
|
|
|
| 55 |
amd_data = []
|
| 56 |
for i, stat in enumerate(daily_stats):
|
| 57 |
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
|
|
|
|
| 64 |
])
|
| 65 |
amd_df = pd.DataFrame(amd_data)
|
| 66 |
|
|
|
|
| 67 |
nvidia_data = []
|
| 68 |
for i, stat in enumerate(daily_stats):
|
| 69 |
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0
|
|
|
|
| 83 |
}
|
| 84 |
|
| 85 |
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
|
|
|
|
| 86 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 87 |
|
| 88 |
if model_data.empty:
|
|
|
|
| 127 |
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)}
|
| 128 |
|
| 129 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
|
|
| 130 |
if historical_df.empty or 'date' not in historical_df.columns:
|
|
|
|
| 131 |
empty_df = pd.DataFrame({'date': [], 'failure_rate': [], 'platform': []})
|
| 132 |
return {
|
| 133 |
'failure_rates': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["failure_rate", "date", "change"]),
|
|
|
|
| 135 |
'nvidia_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"])
|
| 136 |
}
|
| 137 |
|
|
|
|
| 138 |
daily_stats = []
|
| 139 |
dates = sorted(historical_df['date'].unique())
|
| 140 |
|
| 141 |
for date in dates:
|
| 142 |
date_data = historical_df[historical_df['date'] == date]
|
| 143 |
|
|
|
|
| 144 |
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
|
| 145 |
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
|
| 146 |
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
|
| 147 |
amd_total = amd_passed + amd_failed + amd_skipped
|
| 148 |
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
|
| 149 |
|
|
|
|
| 150 |
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
|
| 151 |
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
|
| 152 |
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
|
|
|
|
| 165 |
'nvidia_skipped': nvidia_skipped
|
| 166 |
})
|
| 167 |
|
|
|
|
| 168 |
failure_rate_data = []
|
| 169 |
for i, stat in enumerate(daily_stats):
|
| 170 |
+
amd_change = nvidia_change = 0
|
|
|
|
|
|
|
| 171 |
if i > 0:
|
| 172 |
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate']
|
| 173 |
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate']
|
|
|
|
| 179 |
|
| 180 |
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 181 |
|
|
|
|
| 182 |
amd_data = []
|
| 183 |
for i, stat in enumerate(daily_stats):
|
| 184 |
+
passed_change = failed_change = skipped_change = 0
|
|
|
|
|
|
|
|
|
|
| 185 |
if i > 0:
|
| 186 |
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed']
|
| 187 |
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed']
|
|
|
|
| 195 |
|
| 196 |
amd_df = pd.DataFrame(amd_data)
|
| 197 |
|
|
|
|
| 198 |
nvidia_data = []
|
| 199 |
for i, stat in enumerate(daily_stats):
|
| 200 |
+
passed_change = failed_change = skipped_change = 0
|
|
|
|
|
|
|
|
|
|
| 201 |
if i > 0:
|
| 202 |
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed']
|
| 203 |
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed']
|
|
|
|
| 217 |
x="date",
|
| 218 |
y="failure_rate",
|
| 219 |
color="platform",
|
| 220 |
+
color_map={"AMD": COLORS['amd'], "NVIDIA": COLORS['nvidia']},
|
| 221 |
title="Overall Failure Rates Over Time",
|
| 222 |
tooltip=["failure_rate", "date", "change"],
|
| 223 |
+
height=350,
|
| 224 |
x_label_angle=45,
|
| 225 |
y_title="Failure Rate (%)"
|
| 226 |
),
|
|
|
|
| 229 |
x="date",
|
| 230 |
y="count",
|
| 231 |
color="test_type",
|
| 232 |
+
color_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 233 |
title="AMD Test Results Over Time",
|
| 234 |
tooltip=["count", "date", "change"],
|
| 235 |
+
height=350,
|
| 236 |
x_label_angle=45,
|
| 237 |
y_title="Number of Tests"
|
| 238 |
),
|
|
|
|
| 241 |
x="date",
|
| 242 |
y="count",
|
| 243 |
color="test_type",
|
| 244 |
+
color_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 245 |
title="NVIDIA Test Results Over Time",
|
| 246 |
tooltip=["count", "date", "change"],
|
| 247 |
+
height=350,
|
| 248 |
x_label_angle=45,
|
| 249 |
y_title="Number of Tests"
|
| 250 |
)
|
|
|
|
| 252 |
|
| 253 |
|
| 254 |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
|
|
|
|
| 255 |
if historical_df.empty or 'date' not in historical_df.columns:
|
|
|
|
| 256 |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
|
| 257 |
return {
|
| 258 |
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
|
| 259 |
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
|
| 260 |
}
|
| 261 |
|
|
|
|
| 262 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 263 |
|
| 264 |
if model_data.empty:
|
|
|
|
| 265 |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
|
| 266 |
return {
|
| 267 |
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
|
| 268 |
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
|
| 269 |
}
|
| 270 |
|
|
|
|
| 271 |
dates = sorted(model_data['date'].unique())
|
| 272 |
|
| 273 |
amd_data = []
|
|
|
|
| 277 |
date_data = model_data[model_data['date'] == date]
|
| 278 |
|
| 279 |
if not date_data.empty:
|
|
|
|
| 280 |
row = date_data.iloc[0]
|
| 281 |
|
|
|
|
| 282 |
amd_passed = row.get('success_amd', 0)
|
| 283 |
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
|
| 284 |
amd_skipped = row.get('skipped_amd', 0)
|
| 285 |
|
| 286 |
+
passed_change = failed_change = skipped_change = 0
|
|
|
|
|
|
|
|
|
|
| 287 |
if i > 0:
|
| 288 |
prev_date_data = model_data[model_data['date'] == dates[i-1]]
|
| 289 |
if not prev_date_data.empty:
|
|
|
|
| 302 |
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change}
|
| 303 |
])
|
| 304 |
|
|
|
|
| 305 |
nvidia_passed = row.get('success_nvidia', 0)
|
| 306 |
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
|
| 307 |
nvidia_skipped = row.get('skipped_nvidia', 0)
|
| 308 |
|
| 309 |
+
nvidia_passed_change = nvidia_failed_change = nvidia_skipped_change = 0
|
|
|
|
|
|
|
|
|
|
| 310 |
if i > 0:
|
| 311 |
prev_date_data = model_data[model_data['date'] == dates[i-1]]
|
| 312 |
if not prev_date_data.empty:
|
|
|
|
| 334 |
x="date",
|
| 335 |
y="count",
|
| 336 |
color="test_type",
|
| 337 |
+
color_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 338 |
title=f"{model_name.upper()} - AMD Results Over Time",
|
| 339 |
x_label_angle=45,
|
| 340 |
y_title="Number of Tests",
|
| 341 |
+
height=350,
|
| 342 |
tooltip=["count", "date", "change"]
|
| 343 |
),
|
| 344 |
'nvidia_plot': gr.LinePlot(
|
|
|
|
| 346 |
x="date",
|
| 347 |
y="count",
|
| 348 |
color="test_type",
|
| 349 |
+
color_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 350 |
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 351 |
x_label_angle=45,
|
| 352 |
y_title="Number of Tests",
|
| 353 |
+
height=350,
|
| 354 |
tooltip=["count", "date", "change"]
|
| 355 |
)
|
| 356 |
+
}
|