File size: 24,694 Bytes
a4bd75a 5d1f54f a4bd75a 475892a 5d1f54f 475892a a4bd75a 475892a 5d1f54f 475892a a4bd75a 5d1f54f a4bd75a 475892a a4bd75a ea0b5ea a4bd75a 475892a a4bd75a ea0b5ea a4bd75a ea0b5ea a4bd75a 5d1f54f a4bd75a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
#!/usr/bin/env python3
"""
Audio-Enhanced Video Highlights Generator
Combines SmolVLM2 visual analysis with Whisper audio transcription
Supports 99+ languages including Telugu, Hindi, English
"""
import os
import sys
import cv2
import argparse
import json
import subprocess
import threading
import time
import tempfile
from pathlib import Path
from PIL import Image
from typing import List, Dict, Optional
import logging
# Add src directory to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
try:
from src.smolvlm2_handler import SmolVLM2Handler
except ImportError:
print("β SmolVLM2Handler not found. Make sure to install dependencies first.")
sys.exit(1)
try:
import whisper
WHISPER_AVAILABLE = True
print("β
Whisper available for audio transcription")
except ImportError:
WHISPER_AVAILABLE = False
print("β Whisper not available. Install with: pip install openai-whisper")
sys.exit(1)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class AudioVisualAnalyzer:
"""Comprehensive analyzer combining visual and audio analysis"""
def __init__(self, whisper_model_size="base", timeout_seconds=90, enable_visual=True, visual_only_mode=False):
"""Initialize with SmolVLM2 and optionally Whisper models"""
print("π§ Initializing Visual Analyzer...")
self.enable_visual = enable_visual
self.visual_only_mode = visual_only_mode
# Initialize SmolVLM2 for visual analysis
if self.enable_visual:
print("π₯ Loading SmolVLM2...")
self.vlm_handler = SmolVLM2Handler()
else:
print("π Visual analysis disabled")
self.vlm_handler = None
self.timeout_seconds = timeout_seconds
# Skip Whisper loading in visual-only mode to save memory/resources
if self.visual_only_mode:
print("ποΈ Visual-only mode enabled - skipping audio processing to optimize performance")
self.whisper_model = None
elif WHISPER_AVAILABLE:
print(f"π₯ Loading Whisper model ({whisper_model_size})...")
self.whisper_model = whisper.load_model(whisper_model_size)
print("β
Whisper model loaded successfully")
else:
self.whisper_model = None
print("β οΈ Whisper not available - audio analysis disabled")
def extract_audio_segments(self, video_path: str, segments: List[Dict]) -> List[str]:
"""Extract audio for specific video segments"""
audio_files = []
temp_dir = tempfile.mkdtemp()
for i, segment in enumerate(segments):
start_time = segment['start_time']
duration = segment['duration']
audio_path = os.path.join(temp_dir, f"segment_{i}.wav")
# Extract audio segment using FFmpeg
cmd = [
'ffmpeg', '-i', video_path,
'-ss', str(start_time),
'-t', str(duration),
'-vn', # No video
'-acodec', 'pcm_s16le', # Uncompressed audio
'-ar', '16000', # 16kHz sample rate for Whisper
'-ac', '1', # Mono
'-f', 'wav', # Force WAV format
'-y', # Overwrite
audio_path
]
try:
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
if os.path.exists(audio_path) and os.path.getsize(audio_path) > 0:
audio_files.append(audio_path)
logger.info(f"π Extracted audio segment {i+1}: {duration:.1f}s")
else:
logger.warning(f"β οΈ Audio segment {i+1} is empty or missing")
audio_files.append(None)
except subprocess.CalledProcessError as e:
logger.warning(f"β οΈ No audio stream in segment {i+1} (this is normal for silent videos)")
audio_files.append(None)
return audio_files
def transcribe_audio_segment(self, audio_path: str) -> Dict:
"""Transcribe audio segment with Whisper"""
if not WHISPER_AVAILABLE or not audio_path or not os.path.exists(audio_path):
return {"text": "", "language": "unknown", "confidence": 0.0}
try:
result = self.whisper_model.transcribe(
audio_path,
language=None, # Auto-detect language
task="transcribe"
)
return {
"text": result.get("text", "").strip(),
"language": result.get("language", "unknown"),
"confidence": 1.0 # Whisper doesn't provide confidence scores
}
except Exception as e:
logger.error(f"β Audio transcription failed: {e}")
return {"text": "", "language": "unknown", "confidence": 0.0}
def analyze_visual_content(self, frame_path: str) -> Dict:
"""Analyze visual content using SmolVLM2 with robust error handling"""
# If visual analysis is disabled, return audio-focused fallback
if not self.enable_visual or self.vlm_handler is None:
logger.info("πΉ Visual analysis disabled, using audio-only mode")
return {"description": "Audio-only analysis mode - visual analysis disabled", "score": 7.0}
max_retries = 2
retry_count = 0
while retry_count < max_retries:
try:
def generate_with_timeout():
prompt = ("Analyze this video frame for interesting, engaging, or highlight-worthy content. "
"IMPORTANT: Start your response with 'Score: X/10' where X is a number from 1-10. "
"Then explain what makes it noteworthy. Focus on action, emotion, important moments, or visually striking elements. "
"Rate based on: Action/movement (high scores), People talking/interacting (medium-high), "
"Static scenes (low-medium), Boring/empty scenes (low scores).")
return self.vlm_handler.generate_response(frame_path, prompt)
# Run with timeout protection
thread_result = [None]
exception_result = [None]
def target():
try:
thread_result[0] = generate_with_timeout()
except Exception as e:
exception_result[0] = e
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
thread.join(self.timeout_seconds)
if thread.is_alive():
logger.warning(f"β° Visual analysis timed out after {self.timeout_seconds}s (attempt {retry_count + 1})")
retry_count += 1
if retry_count >= max_retries:
logger.info("π Switching to audio-only mode due to visual timeout")
return {"description": "Visual analysis timed out - using audio-only mode", "score": 7.0}
continue
if exception_result[0]:
error_msg = str(exception_result[0])
if "probability tensor" in error_msg or "inf" in error_msg or "nan" in error_msg:
logger.warning(f"β οΈ Model inference error, retrying (attempt {retry_count + 1}): {error_msg}")
retry_count += 1
if retry_count >= max_retries:
return {"description": "Model inference failed after retries", "score": 6.0}
continue
else:
raise exception_result[0]
response = thread_result[0]
if not response or len(response.strip()) == 0:
logger.warning(f"β οΈ Empty response, retrying (attempt {retry_count + 1})")
retry_count += 1
if retry_count >= max_retries:
return {"description": "No meaningful response after retries", "score": 6.0}
continue
# Extract score from response
score = self.extract_score_from_text(response)
return {"description": response, "score": score}
except Exception as e:
error_msg = str(e)
logger.warning(f"β οΈ Visual analysis error (attempt {retry_count + 1}): {error_msg}")
retry_count += 1
if retry_count >= max_retries:
return {"description": f"Analysis failed after {max_retries} attempts: {error_msg}", "score": 6.0}
# Fallback if all retries failed
return {"description": "Analysis failed after all retry attempts", "score": 6.0}
def extract_score_from_text(self, text: str) -> float:
"""Extract numeric score from analysis text"""
import re
# Look for patterns like "Score: 8/10", "8/10", "score: 7", etc.
patterns = [
r'score:\s*(\d+(?:\.\d+)?)\s*/\s*10', # "Score: 8/10" (our new format)
r'(\d+(?:\.\d+)?)\s*/\s*10', # "8/10" or "7.5/10"
r'(?:score|rating|rate)(?:\s*[:=]\s*)(\d+(?:\.\d+)?)', # "score: 8" or "rating=7.5"
r'(\d+(?:\.\d+)?)\s*(?:out of|/)\s*10', # "8 out of 10"
r'(?:^|\s)(\d+(?:\.\d+)?)(?:\s*[/]\s*10)?(?:\s|$)', # Just numbers
]
for pattern in patterns:
matches = re.findall(pattern, text.lower())
if matches:
try:
score = float(matches[0])
return min(max(score, 1.0), 10.0) # Clamp between 1-10
except ValueError:
continue
return 6.0 # Default score if no pattern found
def calculate_combined_score(self, visual_score: float, audio_text: str, audio_lang: str) -> float:
"""Calculate combined score from visual and audio analysis"""
# Start with visual score
combined_score = visual_score
# Audio content scoring
if audio_text:
audio_bonus = 0.0
text_lower = audio_text.lower()
# Positive indicators
excitement_words = ['amazing', 'incredible', 'wow', 'fantastic', 'awesome', 'perfect', 'excellent']
action_words = ['goal', 'win', 'victory', 'success', 'breakthrough', 'achievement']
emotion_words = ['happy', 'excited', 'thrilled', 'surprised', 'shocked', 'love']
# Telugu positive indicators (basic)
telugu_positive = ['ΰ°
ΰ°¦ΰ±ΰ°ΰ±ΰ°€ΰ°', 'ΰ°ΰ°Ύΰ°²ΰ°Ύ ΰ°¬ΰ°Ύΰ°ΰ±ΰ°ΰ°¦ΰ°Ώ', 'ΰ°΅ΰ°Ύΰ°΅ΰ±', 'ΰ°Έΰ±ΰ°ͺΰ°°ΰ±']
# Count positive indicators
for word_list in [excitement_words, action_words, emotion_words, telugu_positive]:
for word in word_list:
if word in text_lower:
audio_bonus += 0.5
# Length bonus for substantial content
if len(audio_text) > 50:
audio_bonus += 0.3
elif len(audio_text) > 20:
audio_bonus += 0.1
# Language diversity bonus
if audio_lang in ['te', 'telugu']: # Telugu content
audio_bonus += 0.2
elif audio_lang in ['hi', 'hindi']: # Hindi content
audio_bonus += 0.2
combined_score += audio_bonus
# Clamp final score
return min(max(combined_score, 1.0), 10.0)
def analyze_segment(self, video_path: str, segment: Dict, temp_frame_path: str) -> Dict:
"""Analyze a single video segment with both visual and audio"""
start_time = segment['start_time']
duration = segment['duration']
logger.info(f"π Analyzing segment at {start_time:.1f}s ({duration:.1f}s duration)")
# Visual analysis
visual_analysis = self.analyze_visual_content(temp_frame_path)
# Skip audio analysis in visual-only mode to save resources
if self.visual_only_mode:
logger.info("ποΈ Visual-only mode: skipping audio analysis")
audio_analysis = {"text": "", "language": "unknown", "confidence": 0.0}
# Use pure visual score for highlights
combined_score = visual_analysis['score']
else:
# Audio analysis
audio_files = self.extract_audio_segments(video_path, [segment])
audio_analysis = {"text": "", "language": "unknown", "confidence": 0.0}
if audio_files and audio_files[0]:
audio_analysis = self.transcribe_audio_segment(audio_files[0])
# Cleanup temporary audio file
try:
os.unlink(audio_files[0])
except:
pass
# Combined scoring
combined_score = self.calculate_combined_score(
visual_analysis['score'],
audio_analysis['text'],
audio_analysis['language']
)
return {
'start_time': start_time,
'duration': duration,
'visual_score': visual_analysis['score'],
'visual_description': visual_analysis['description'],
'audio_text': audio_analysis['text'],
'audio_language': audio_analysis['language'],
'combined_score': combined_score,
'selected': False
}
def extract_frames_at_intervals(video_path: str, interval_seconds: float = 10.0) -> List[Dict]:
"""Extract frames at regular intervals from video"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Cannot open video file: {video_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps
logger.info(f"πΉ Video: {duration:.1f}s, {fps:.1f} FPS, {total_frames} frames")
segments = []
current_time = 0
while current_time < duration:
segment_duration = min(interval_seconds, duration - current_time)
segments.append({
'start_time': current_time,
'duration': segment_duration,
'frame_number': int(current_time * fps)
})
current_time += interval_seconds
cap.release()
return segments
def save_frame_at_time(video_path: str, time_seconds: float, output_path: str) -> bool:
"""Save a frame at specific time with robust frame extraction"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return False
try:
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_number = int(time_seconds * fps)
# Ensure frame number is within valid range
frame_number = min(frame_number, total_frames - 1)
frame_number = max(frame_number, 0)
# Try to extract frame with fallback options
for attempt in range(3):
try:
# Try exact frame first
test_frame = frame_number + attempt
if test_frame >= total_frames:
test_frame = frame_number - attempt
if test_frame < 0:
test_frame = frame_number
cap.set(cv2.CAP_PROP_POS_FRAMES, test_frame)
ret, frame = cap.read()
if ret and frame is not None and frame.size > 0:
# Validate frame data
if len(frame.shape) == 3 and frame.shape[2] == 3: # Valid color frame
success = cv2.imwrite(output_path, frame)
if success:
cap.release()
return True
except Exception as e:
logger.warning(f"Frame extraction attempt {attempt + 1} failed: {e}")
continue
cap.release()
return False
except Exception as e:
logger.error(f"Critical error in frame extraction: {e}")
cap.release()
return False
def create_highlights_video(video_path: str, selected_segments: List[Dict], output_path: str):
"""Create highlights video from selected segments"""
if not selected_segments:
logger.error("β No segments selected for highlights")
return False
# Create temporary files for each segment
temp_files = []
temp_dir = tempfile.mkdtemp()
for i, segment in enumerate(selected_segments):
temp_file = os.path.join(temp_dir, f"segment_{i}.mp4")
cmd = [
'ffmpeg', '-i', video_path,
'-ss', str(segment['start_time']),
'-t', str(segment['duration']),
'-c', 'copy', # Copy streams without re-encoding
'-y', temp_file
]
try:
subprocess.run(cmd, check=True, capture_output=True)
temp_files.append(temp_file)
logger.info(f"β
Created segment {i+1}/{len(selected_segments)}")
except subprocess.CalledProcessError as e:
logger.error(f"β Failed to create segment {i+1}: {e}")
continue
if not temp_files:
logger.error("β No valid segments created")
return False
# Create concat file
concat_file = os.path.join(temp_dir, "concat.txt")
with open(concat_file, 'w') as f:
for temp_file in temp_files:
f.write(f"file '{temp_file}'\n")
# Concatenate segments
cmd = [
'ffmpeg', '-f', 'concat', '-safe', '0',
'-i', concat_file,
'-c', 'copy',
'-y', output_path
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logger.info(f"β
Highlights video created: {output_path}")
# Cleanup
for temp_file in temp_files:
try:
os.unlink(temp_file)
except:
pass
try:
os.unlink(concat_file)
os.rmdir(temp_dir)
except:
pass
return True
except subprocess.CalledProcessError as e:
logger.error(f"β Failed to create highlights video: {e}")
return False
def main():
parser = argparse.ArgumentParser(description="Audio-Enhanced Video Highlights Generator")
parser.add_argument("video_path", help="Path to input video file")
parser.add_argument("--output", "-o", default="audio_enhanced_highlights.mp4",
help="Output highlights video path")
parser.add_argument("--interval", "-i", type=float, default=10.0,
help="Analysis interval in seconds (default: 10.0)")
parser.add_argument("--min-score", "-s", type=float, default=7.0,
help="Minimum score for highlights (default: 7.0)")
parser.add_argument("--max-highlights", "-m", type=int, default=5,
help="Maximum number of highlights (default: 5)")
parser.add_argument("--whisper-model", "-w", default="base",
choices=["tiny", "base", "small", "medium", "large"],
help="Whisper model size (default: base)")
parser.add_argument("--timeout", "-t", type=int, default=30,
help="Timeout for each analysis in seconds (default: 30)")
parser.add_argument("--save-analysis", action="store_true",
help="Save detailed analysis to JSON file")
args = parser.parse_args()
# Validate input
if not os.path.exists(args.video_path):
print(f"β Video file not found: {args.video_path}")
sys.exit(1)
print("π¬ Audio-Enhanced Video Highlights Generator")
print(f"π Input: {args.video_path}")
print(f"π Output: {args.output}")
print(f"β±οΈ Analysis interval: {args.interval}s")
print(f"π― Minimum score: {args.min_score}")
print(f"π Max highlights: {args.max_highlights}")
print(f"ποΈ Whisper model: {args.whisper_model}")
print()
try:
# Initialize analyzer
analyzer = AudioVisualAnalyzer(
whisper_model_size=args.whisper_model,
timeout_seconds=args.timeout
)
# Extract segments for analysis
segments = extract_frames_at_intervals(args.video_path, args.interval)
print(f"π Analyzing {len(segments)} segments...")
analyzed_segments = []
temp_frame_path = "temp_frame.jpg"
for i, segment in enumerate(segments):
print(f"\nπ Segment {i+1}/{len(segments)} (t={segment['start_time']:.1f}s)")
# Save frame for visual analysis
if save_frame_at_time(args.video_path, segment['start_time'], temp_frame_path):
# Analyze segment
analysis = analyzer.analyze_segment(args.video_path, segment, temp_frame_path)
analyzed_segments.append(analysis)
print(f" ποΈ Visual: {analysis['visual_score']:.1f}/10")
print(f" ποΈ Audio: '{analysis['audio_text'][:50]}...' ({analysis['audio_language']})")
print(f" π― Combined: {analysis['combined_score']:.1f}/10")
else:
print(f" β Failed to extract frame")
# Cleanup temp frame
try:
os.unlink(temp_frame_path)
except:
pass
if not analyzed_segments:
print("β No segments analyzed successfully")
sys.exit(1)
# Select best segments
analyzed_segments.sort(key=lambda x: x['combined_score'], reverse=True)
selected_segments = [s for s in analyzed_segments if s['combined_score'] >= args.min_score]
selected_segments = selected_segments[:args.max_highlights]
print(f"\nπ Selected {len(selected_segments)} highlights:")
for i, segment in enumerate(selected_segments):
print(f"{i+1}. t={segment['start_time']:.1f}s, score={segment['combined_score']:.1f}")
if segment['audio_text']:
print(f" Audio: \"{segment['audio_text'][:100]}...\"")
if not selected_segments:
print(f"β No segments met minimum score of {args.min_score}")
sys.exit(1)
# Create highlights video
print(f"\n㪠Creating highlights video...")
success = create_highlights_video(args.video_path, selected_segments, args.output)
if success:
print(f"β
Audio-enhanced highlights created: {args.output}")
# Save analysis if requested
if args.save_analysis:
analysis_file = args.output.replace('.mp4', '_analysis.json')
with open(analysis_file, 'w') as f:
json.dump({
'input_video': args.video_path,
'output_video': args.output,
'settings': {
'interval': args.interval,
'min_score': args.min_score,
'max_highlights': args.max_highlights,
'whisper_model': args.whisper_model,
'timeout': args.timeout
},
'segments': analyzed_segments,
'selected_segments': selected_segments
}, f, indent=2)
print(f"π Analysis saved: {analysis_file}")
else:
print("β Failed to create highlights video")
sys.exit(1)
except KeyboardInterrupt:
print("\nβΉοΈ Operation cancelled by user")
sys.exit(1)
except Exception as e:
print(f"β Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()
|