File size: 11,215 Bytes
58f0729 7ef6739 58f0729 7ef6739 58f0729 7ef6739 58f0729 7ef6739 58f0729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#!/usr/bin/env python3
"""
FastAPI Wrapper for HuggingFace Segment-Based Video Highlights
Updated with the latest segment-based approach for better accuracy
"""
import os
import tempfile
# Set cache directories to writable locations for HuggingFace Spaces
# Use /tmp which is guaranteed to be writable in containers
CACHE_DIR = os.path.join("/tmp", ".cache", "huggingface")
os.makedirs(CACHE_DIR, exist_ok=True)
os.makedirs(os.path.join("/tmp", ".cache", "torch"), exist_ok=True)
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = CACHE_DIR
os.environ['HF_DATASETS_CACHE'] = CACHE_DIR
os.environ['TORCH_HOME'] = os.path.join("/tmp", ".cache", "torch")
os.environ['XDG_CACHE_HOME'] = os.path.join("/tmp", ".cache")
os.environ['HUGGINGFACE_HUB_CACHE'] = CACHE_DIR
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import sys
import uuid
import json
import asyncio
from pathlib import Path
from typing import Optional
import logging
# Add src directory to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
try:
from huggingface_exact_approach import VideoHighlightDetector
except ImportError:
print("❌ Cannot import huggingface_exact_approach.py")
sys.exit(1)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# FastAPI app
app = FastAPI(
title="SmolVLM2 Optimized HuggingFace Video Highlights API",
description="Generate intelligent video highlights using SmolVLM2 segment-based approach",
version="2.0.0"
)
# Enable CORS for web apps
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify your domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request/Response models
class AnalysisRequest(BaseModel):
segment_length: float = 5.0
model_name: str = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"
with_effects: bool = True
class AnalysisResponse(BaseModel):
job_id: str
status: str
message: str
class JobStatus(BaseModel):
job_id: str
status: str # "processing", "completed", "failed"
progress: int # 0-100
message: str
highlights_url: Optional[str] = None
analysis_url: Optional[str] = None
total_segments: Optional[int] = None
selected_segments: Optional[int] = None
compression_ratio: Optional[float] = None
# Global storage for jobs (in production, use Redis/database)
active_jobs = {}
completed_jobs = {}
# Create output directories with proper permissions
TEMP_DIR = os.path.join("/tmp", "temp")
OUTPUTS_DIR = os.path.join("/tmp", "outputs")
# Create directories with proper permissions
os.makedirs(OUTPUTS_DIR, mode=0o755, exist_ok=True)
os.makedirs(TEMP_DIR, mode=0o755, exist_ok=True)
@app.get("/")
async def read_root():
"""Welcome message with API information"""
return {
"message": "SmolVLM2 Optimized HuggingFace Video Highlights API",
"version": "3.0.0",
"approach": "Optimized HuggingFace exact approach with STRICT prompting",
"model": "SmolVLM2-256M-Video-Instruct (faster processing)",
"improvements": [
"STRICT system prompting for selectivity",
"Structured YES/NO user prompts",
"Temperature 0.3 for consistent decisions",
"Enhanced response processing with fallbacks"
],
"endpoints": {
"upload": "POST /upload-video",
"status": "GET /job-status/{job_id}",
"download": "GET /download/{filename}",
"docs": "GET /docs"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "model": "SmolVLM2-256M-Video-Instruct"}
async def process_video_background(job_id: str, video_path: str, output_path: str,
segment_length: float, model_name: str, with_effects: bool):
"""Background task to process video"""
try:
# Update job status
active_jobs[job_id]["status"] = "processing"
active_jobs[job_id]["progress"] = 10
active_jobs[job_id]["message"] = "Initializing AI model..."
# Initialize detector
detector = VideoHighlightDetector(model_path=model_name)
active_jobs[job_id]["progress"] = 20
active_jobs[job_id]["message"] = "Analyzing video content..."
# Process video
results = detector.process_video(
video_path=video_path,
output_path=output_path,
segment_length=segment_length,
with_effects=with_effects
)
if "error" in results:
# Failed
active_jobs[job_id]["status"] = "failed"
active_jobs[job_id]["message"] = results["error"]
active_jobs[job_id]["progress"] = 0
else:
# Success - move to completed jobs
output_filename = os.path.basename(output_path)
analysis_filename = output_filename.replace('.mp4', '_analysis.json')
analysis_path = os.path.join(OUTPUTS_DIR, analysis_filename)
# Save analysis
with open(analysis_path, 'w') as f:
json.dump(results, f, indent=2)
completed_jobs[job_id] = {
"job_id": job_id,
"status": "completed",
"progress": 100,
"message": f"Created highlights with {results['selected_segments']} segments",
"highlights_url": f"/download/{output_filename}",
"analysis_url": f"/download/{analysis_filename}",
"total_segments": results["total_segments"],
"selected_segments": results["selected_segments"],
"compression_ratio": results["compression_ratio"]
}
# Remove from active jobs
if job_id in active_jobs:
del active_jobs[job_id]
except Exception as e:
logger.error(f"Error processing video {job_id}: {str(e)}")
active_jobs[job_id]["status"] = "failed"
active_jobs[job_id]["message"] = f"Processing error: {str(e)}"
active_jobs[job_id]["progress"] = 0
finally:
# Clean up temp video file
if os.path.exists(video_path):
os.unlink(video_path)
@app.post("/upload-video", response_model=AnalysisResponse)
async def upload_video(
background_tasks: BackgroundTasks,
video: UploadFile = File(...),
segment_length: float = 5.0,
model_name: str = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
with_effects: bool = True
):
"""
Upload video for highlight generation
Args:
video: Video file to process
segment_length: Length of each segment in seconds (default: 5.0)
model_name: SmolVLM2 model to use
with_effects: Enable fade transitions (default: True)
"""
# Validate file type
if not video.content_type.startswith('video/'):
raise HTTPException(status_code=400, detail="File must be a video")
# Generate unique job ID
job_id = str(uuid.uuid4())
# Save uploaded video to temp file
temp_video_path = os.path.join(TEMP_DIR, f"{job_id}_input.mp4")
output_path = os.path.join(OUTPUTS_DIR, f"{job_id}_highlights.mp4")
try:
# Save uploaded file
with open(temp_video_path, "wb") as buffer:
content = await video.read()
buffer.write(content)
# Initialize job tracking
active_jobs[job_id] = {
"job_id": job_id,
"status": "queued",
"progress": 5,
"message": "Video uploaded, queued for processing",
"highlights_url": None,
"analysis_url": None
}
# Start background processing
background_tasks.add_task(
process_video_background,
job_id, temp_video_path, output_path,
segment_length, model_name, with_effects
)
return AnalysisResponse(
job_id=job_id,
status="queued",
message="Video uploaded successfully. Processing started."
)
except Exception as e:
# Clean up on error
if os.path.exists(temp_video_path):
os.unlink(temp_video_path)
raise HTTPException(status_code=500, detail=f"Failed to process upload: {str(e)}")
@app.get("/job-status/{job_id}", response_model=JobStatus)
async def get_job_status(job_id: str):
"""Get processing status for a job"""
# Check completed jobs first
if job_id in completed_jobs:
return JobStatus(**completed_jobs[job_id])
# Check active jobs
if job_id in active_jobs:
return JobStatus(**active_jobs[job_id])
# Job not found
raise HTTPException(status_code=404, detail="Job not found")
@app.get("/download/{filename}")
async def download_file(filename: str):
"""Download generated highlights or analysis file"""
file_path = os.path.join(OUTPUTS_DIR, filename)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="File not found")
# Determine media type
if filename.endswith('.mp4'):
media_type = 'video/mp4'
elif filename.endswith('.json'):
media_type = 'application/json'
else:
media_type = 'application/octet-stream'
return FileResponse(
path=file_path,
media_type=media_type,
filename=filename
)
@app.get("/jobs")
async def list_jobs():
"""List all jobs (for debugging)"""
return {
"active_jobs": len(active_jobs),
"completed_jobs": len(completed_jobs),
"active": list(active_jobs.keys()),
"completed": list(completed_jobs.keys())
}
@app.delete("/cleanup")
async def cleanup_old_jobs():
"""Clean up old completed jobs and files"""
cleaned_jobs = 0
cleaned_files = 0
# Keep only last 10 completed jobs
if len(completed_jobs) > 10:
jobs_to_remove = list(completed_jobs.keys())[:-10]
for job_id in jobs_to_remove:
del completed_jobs[job_id]
cleaned_jobs += 1
# Clean up old files (keep only files from last 20 jobs)
all_jobs = list(active_jobs.keys()) + list(completed_jobs.keys())
try:
for filename in os.listdir(OUTPUTS_DIR):
file_job_id = filename.split('_')[0]
if file_job_id not in all_jobs:
file_path = os.path.join(OUTPUTS_DIR, filename)
os.unlink(file_path)
cleaned_files += 1
except Exception as e:
logger.error(f"Error during cleanup: {e}")
return {
"message": "Cleanup completed",
"cleaned_jobs": cleaned_jobs,
"cleaned_files": cleaned_files
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|