Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from pdf2image import convert_from_path | |
| from transformers import AutoModel, AutoTokenizer | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import base64 | |
| import io | |
| import uuid | |
| import tempfile | |
| import time | |
| import shutil | |
| from pathlib import Path | |
| import json | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
| model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, device_map='cuda', use_safetensors=True) | |
| model = model.eval().cuda() | |
| UPLOAD_FOLDER = "./uploads" | |
| RESULTS_FOLDER = "./results" | |
| # Ensure directories exist | |
| for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
| if not os.path.exists(folder): | |
| os.makedirs(folder) | |
| def image_to_base64(image): | |
| buffered = io.BytesIO() | |
| image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode() | |
| def convert_pdf_to_images(pdf_path, output_folder): | |
| # Ensure the output folder exists | |
| if not os.path.exists(output_folder): | |
| os.makedirs(output_folder) | |
| # Convert PDF to images | |
| images = convert_from_path(pdf_path) | |
| # Save each image to the output folder | |
| image_paths = [] | |
| for i, image in enumerate(images): | |
| image_path = os.path.join(output_folder, f"page_{i + 1}.png") | |
| image.save(image_path, 'JPEG') | |
| image_paths.append(image_path) | |
| print(f"Saved {image_path}") | |
| return image_paths | |
| def run_GOT(pdf_file): | |
| unique_id = str(uuid.uuid4()) | |
| pdf_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.pdf") | |
| shutil.copy(pdf_file, pdf_path) | |
| images = convert_pdf_to_images(pdf_path, UPLOAD_FOLDER) | |
| results = [] | |
| try: | |
| for i, image_path in enumerate(images): | |
| result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}_page_{i+1}.html") | |
| res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
| # Read the rendered HTML content | |
| with open(result_path, 'r') as f: | |
| html_content = f.read() | |
| results.append({ | |
| "page_number": i + 1, | |
| "text": res, | |
| "html": html_content | |
| }) | |
| if os.path.exists(image_path): | |
| os.remove(image_path) | |
| if os.path.exists(result_path): | |
| os.remove(result_path) | |
| except Exception as e: | |
| return f"Error: {str(e)}", None | |
| finally: | |
| if os.path.exists(pdf_path): | |
| os.remove(pdf_path) | |
| html_output = "".join([result["html"] for result in results]) | |
| print("HTML Output:", html_output) # Debugging print statement | |
| return json.dumps(results, indent=4), html_output | |
| def cleanup_old_files(): | |
| current_time = time.time() | |
| for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
| for file_path in Path(folder).glob('*'): | |
| if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
| file_path.unlink() | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| pdf_input = gr.File(type="filepath", label="Upload your PDF") | |
| submit_button = gr.Button("Submit") | |
| with gr.Column(): | |
| ocr_result = gr.JSON(label="GOT output") | |
| html_output = gr.HTML(label="Rendered HTML") | |
| submit_button.click( | |
| run_GOT, | |
| inputs=[pdf_input], | |
| outputs=[ocr_result, html_output] | |
| ) | |
| if __name__ == "__main__": | |
| cleanup_old_files() | |
| demo.launch() |