Spaces:
Build error
Build error
| import os | |
| from pathlib import Path | |
| import numpy as np | |
| from tokenizers import Tokenizer | |
| import modules.shared as shared | |
| from modules.callbacks import Iteratorize | |
| np.set_printoptions(precision=4, suppress=True, linewidth=200) | |
| os.environ['RWKV_JIT_ON'] = '1' | |
| os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster) | |
| from rwkv.model import RWKV | |
| from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
| class RWKVModel: | |
| def __init__(self): | |
| pass | |
| def from_pretrained(self, path, dtype="fp16", device="cuda"): | |
| tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json") | |
| if shared.args.rwkv_strategy is None: | |
| model = RWKV(model=str(path), strategy=f'{device} {dtype}') | |
| else: | |
| model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy) | |
| pipeline = PIPELINE(model, str(tokenizer_path)) | |
| result = self() | |
| result.pipeline = pipeline | |
| return result | |
| def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None): | |
| args = PIPELINE_ARGS( | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| alpha_frequency=alpha_frequency, # Frequency Penalty (as in GPT-3) | |
| alpha_presence=alpha_presence, # Presence Penalty (as in GPT-3) | |
| token_ban=token_ban, # ban the generation of some tokens | |
| token_stop=token_stop | |
| ) | |
| return self.pipeline.generate(context, token_count=token_count, args=args, callback=callback) | |
| def generate_with_streaming(self, **kwargs): | |
| with Iteratorize(self.generate, kwargs, callback=None) as generator: | |
| reply = '' | |
| for token in generator: | |
| reply += token | |
| yield reply | |
| class RWKVTokenizer: | |
| def __init__(self): | |
| pass | |
| def from_pretrained(self, path): | |
| tokenizer_path = path / "20B_tokenizer.json" | |
| tokenizer = Tokenizer.from_file(str(tokenizer_path)) | |
| result = self() | |
| result.tokenizer = tokenizer | |
| return result | |
| def encode(self, prompt): | |
| return self.tokenizer.encode(prompt).ids | |
| def decode(self, ids): | |
| return self.tokenizer.decode(ids) | |