sithuWiki commited on
Commit
725fa71
·
verified ·
1 Parent(s): 9da8b6b

update electricity.py

Browse files
Files changed (1) hide show
  1. electricity_prices.py +17 -118
electricity_prices.py CHANGED
@@ -1,129 +1,28 @@
1
  # electricity_prices.py
 
 
2
 
3
- import os
4
- from datetime import date as Date
5
- from typing import Dict, Optional
6
 
7
- import pandas as pd
8
- from huggingface_hub import hf_hub_download
 
 
9
 
10
- # ---------------------------------------------------------------------------
11
- # Configuration
12
- # ---------------------------------------------------------------------------
13
-
14
- # Private dataset repo on Hugging Face containing the CSV files
15
- HF_DATASET_REPO = "sithuWiki/electricity"
16
- HF_DATASET_TOKEN_ENV = "HF_DATASET_TOKEN" # set this in your Space secrets
17
-
18
- # Fallback / base rates used when a date is outside the CSV range
19
- BASE_ELECTRICITY_RATES: Dict[str, float] = {
20
- "texas": 0.1549,
21
  "china": 0.08,
22
  "ethiopia": 0.01,
23
  }
24
 
25
- # Mapping from region name -> CSV filename in the private dataset
26
- REGION_FILES: Dict[str, str] = {
27
- "texas": "texas_residential_daily_df.csv",
28
- "china": "china_electricity_prices_daily.csv",
29
- "ethiopia": "ethiopia_electricity_prices_daily.csv",
30
- }
31
-
32
- # In-memory cache: region -> pandas.Series indexed by python date with float prices
33
- _ELECTRICITY_SERIES: Dict[str, Optional[pd.Series]] = {}
34
-
35
-
36
- def _get_token() -> str:
37
- token = os.environ.get(HF_DATASET_TOKEN_ENV)
38
- if not token:
39
- raise RuntimeError(
40
- f"Environment variable {HF_DATASET_TOKEN_ENV} is not set. "
41
- "Add a read token for the private dataset to your Space secrets."
42
- )
43
- return token
44
-
45
-
46
- def _load_region_series(region: str, filename: str) -> Optional[pd.Series]:
47
- """
48
- Load a single region's CSV from the private HF dataset as a Series.
49
-
50
- Expected columns in CSV:
51
- - 'date' (any format parsable by pandas.to_datetime, e.g. '10/1/15')
52
- - 'price' (electricity price per kWh)
53
- """
54
- try:
55
- token = _get_token()
56
- file_path = hf_hub_download(
57
- repo_id=HF_DATASET_REPO,
58
- filename=filename,
59
- repo_type="dataset",
60
- token=token,
61
- )
62
- df = pd.read_csv(file_path)
63
-
64
- if "date" not in df.columns or "price" not in df.columns:
65
- raise ValueError(f"{filename} must contain 'date' and 'price' columns.")
66
-
67
- # Normalize date to python date objects
68
- df["date"] = pd.to_datetime(df["date"]).dt.date
69
- df = df[["date", "price"]].copy()
70
- df = df.sort_values("date")
71
- series = df.set_index("date")["price"].astype(float)
72
- return series
73
- except Exception as e:
74
- print(f"⚠️ Could not load electricity data for {region} from {filename}: {e}")
75
- return None
76
-
77
-
78
- # Load all regions at import time (one-time cost)
79
- for _region, _fname in REGION_FILES.items():
80
- _ELECTRICITY_SERIES[_region] = _load_region_series(_region, _fname)
81
-
82
-
83
- def get_electricity_rate(region: str, d) -> float:
84
  """
85
- Return the electricity rate (USD/kWh) for a given region and date.
 
86
 
87
- - If d is inside the CSV range, we use that day's price (or last available
88
- before d, to handle gaps).
89
- - If d is outside the CSV range or data is missing, we fall back to
90
- BASE_ELECTRICITY_RATES[region].
91
  """
92
- if region not in BASE_ELECTRICITY_RATES:
93
- raise ValueError(
94
- f"Unknown region '{region}'. Expected one of {list(BASE_ELECTRICITY_RATES.keys())}"
95
- )
96
-
97
- # Normalise input date
98
- if isinstance(d, pd.Timestamp):
99
- d = d.date()
100
- elif isinstance(d, str):
101
- d = pd.to_datetime(d).date()
102
- elif isinstance(d, Date):
103
- pass # already ok
104
- else:
105
- raise TypeError(
106
- f"Unsupported date type {type(d)}; expected datetime.date, pandas.Timestamp, or str"
107
- )
108
-
109
- base_rate = BASE_ELECTRICITY_RATES[region]
110
- series = _ELECTRICITY_SERIES.get(region)
111
-
112
- if series is None or series.empty:
113
- return base_rate
114
-
115
- idx = series.index
116
-
117
- # Outside known range → use base constant rate
118
- if d < idx[0] or d > idx[-1]:
119
- return base_rate
120
-
121
- # Exact match
122
- if d in series.index:
123
- return float(series.loc[d])
124
-
125
- # Otherwise, use the last available price before this date
126
- prev = series.loc[:d]
127
- if prev.empty:
128
- return base_rate
129
- return float(prev.iloc[-1])
 
1
  # electricity_prices.py
2
+ """
3
+ Simplified electricity price module for Hugging Face demo.
4
 
5
+ We don't load CSVs or use HF_DATASET_TOKEN anymore.
6
+ The real-time app takes electricity_rate directly from the user.
 
7
 
8
+ This file only exists:
9
+ - to provide a simple default ELECTRICITY_RATES dict (if needed)
10
+ - to keep compatibility with older imports (get_electricity_rate)
11
+ """
12
 
13
+ # Simple default average rates for reference / fallback
14
+ ELECTRICITY_RATES = {
15
+ "texas": 0.15, # average residential USD/kWh (example)
 
 
 
 
 
 
 
 
16
  "china": 0.08,
17
  "ethiopia": 0.01,
18
  }
19
 
20
+ def get_electricity_rate(region: str, day=None) -> float:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  """
22
+ For the real-time demo, we don't actually use this in feature construction
23
+ (we rely on user input). But some legacy code may still call it.
24
 
25
+ We simply return a region-average from ELECTRICITY_RATES,
26
+ without reading any CSV or using HF_DATASET_TOKEN.
 
 
27
  """
28
+ return ELECTRICITY_RATES.get(region, 0.10)