MineROI-Net / fetch_blockchain_data.py
sithuWiki's picture
upload fetch_blockchain_data.py
b0a6f60 verified
raw
history blame
8.14 kB
"""Fetch blockchain data - supports both complete historical data and API fallback"""
import requests
import pandas as pd
from datetime import datetime, timedelta
import os
# Global cache for complete blockchain data
_BLOCKCHAIN_DATA_CACHE = None
COMPLETE_DATA_FILE = 'blockchain_data_complete.csv'
def load_complete_blockchain_data(force_reload=False):
"""
Load the complete blockchain data CSV (one-time load, then cached in memory)
Parameters:
-----------
force_reload : bool
Force reload from disk even if cached
Returns:
--------
pd.DataFrame or None
Complete blockchain data with columns: date, bitcoin_price, difficulty, fees, hashrate, revenue, block_reward, days_since_halving
"""
global _BLOCKCHAIN_DATA_CACHE
# Return cached data if available
if _BLOCKCHAIN_DATA_CACHE is not None and not force_reload:
return _BLOCKCHAIN_DATA_CACHE
# Check if file exists
if not os.path.exists(COMPLETE_DATA_FILE):
print(f"\nโš ๏ธ WARNING: {COMPLETE_DATA_FILE} not found!")
print(" Falling back to API (limited to recent data)...")
return None
# Load from CSV
print(f"๐Ÿ“‚ Loading complete blockchain data from {COMPLETE_DATA_FILE}...")
df = pd.read_csv(COMPLETE_DATA_FILE)
df['date'] = pd.to_datetime(df['date'])
# Cache it in memory
_BLOCKCHAIN_DATA_CACHE = df
print(f"โœ… Loaded {len(df):,} rows of data")
print(f" Date range: {df['date'].min().date()} to {df['date'].max().date()}")
return df
def get_blockchain_data_for_date(target_date, window_size=30):
"""
Get blockchain data for a specific date (includes window_size days before)
Parameters:
-----------
target_date : str or datetime
Target prediction date
window_size : int
Number of days needed before target_date (default: 30)
Returns:
--------
pd.DataFrame
Blockchain data from (target_date - window_size) to target_date
"""
# Load complete data
complete_df = load_complete_blockchain_data()
if complete_df is None:
# Fallback to API
return get_latest_blockchain_data(days=90)
# Convert target_date to datetime
if isinstance(target_date, str):
target_date = pd.to_datetime(target_date)
# Calculate start date (need window_size days before target)
start_date = target_date - timedelta(days=window_size + 10) # +10 buffer for safety
# Filter to date range
mask = (complete_df['date'] >= start_date) & (complete_df['date'] <= target_date)
filtered_df = complete_df[mask].copy().reset_index(drop=True)
if len(filtered_df) < window_size:
print(f"โš ๏ธ WARNING: Not enough data for {target_date.date()}")
print(f" Need {window_size} days, got {len(filtered_df)}")
return filtered_df
def get_latest_blockchain_data(days=90):
"""
Get the most recent N days of blockchain data
Compatible with original function signature
Parameters:
-----------
days : int
Number of days to fetch (from today backward)
Returns:
--------
pd.DataFrame
Blockchain data for the last N days
"""
# Try to load complete data first
complete_df = load_complete_blockchain_data()
if complete_df is not None:
# Get last N days from complete data
end_date = complete_df['date'].max()
start_date = end_date - timedelta(days=days)
mask = (complete_df['date'] >= start_date) & (complete_df['date'] <= end_date)
filtered_df = complete_df[mask].copy().reset_index(drop=True)
return filtered_df
else:
# Fallback to API if complete data not available
print("๐Ÿ“ก Falling back to API...")
return get_latest_blockchain_data_from_api(days)
def get_latest_blockchain_data_from_api(days=90):
"""
Fallback: Fetch from API if complete data file not available
(Original implementation)
"""
data_types = {
'bitcoin_price': 'market-price',
'difficulty': 'difficulty',
'fees': 'transaction-fees',
'hashrate': 'hash-rate',
'revenue': 'miners-revenue'
}
timespan = f'{days}days'
all_data = {}
for name, chart_name in data_types.items():
url = f'https://api.blockchain.info/charts/{chart_name}'
params = {'timespan': timespan, 'format': 'json'}
try:
response = requests.get(url, params=params, timeout=30)
response.raise_for_status()
values = response.json().get('values', [])
df_temp = pd.DataFrame(values)
df_temp['x'] = pd.to_datetime(df_temp['x'], unit='s')
df_temp = df_temp.set_index('x').rename(columns={'y': name})
all_data[name] = df_temp
except Exception as e:
print(f"โŒ Failed to fetch {name}: {e}")
return None
# Merge all
merged_df = all_data['bitcoin_price']
for name in ['difficulty', 'fees', 'hashrate', 'revenue']:
merged_df = merged_df.join(all_data[name], how='outer')
merged_df = merged_df.reset_index().rename(columns={'x': 'date'})
merged_df = merged_df.sort_values('date').reset_index(drop=True)
# Add block reward
merged_df['block_reward'] = merged_df['date'].apply(calculate_block_reward)
# Add days since halving
merged_df['days_since_halving'] = merged_df['date'].apply(get_days_since_halving)
return merged_df
def calculate_block_reward(date):
"""Calculate block reward based on halving schedule"""
if pd.isna(date):
return None
elif date < pd.Timestamp('2012-11-28'):
return 50
elif date < pd.Timestamp('2016-07-09'):
return 25
elif date < pd.Timestamp('2020-05-11'):
return 12.5
elif date < pd.Timestamp('2024-04-20'):
return 6.25
else:
return 3.125
def get_days_since_halving(date):
"""Calculate days since most recent halving"""
halving_dates = [
pd.Timestamp('2012-11-28'),
pd.Timestamp('2016-07-09'),
pd.Timestamp('2020-05-11'),
pd.Timestamp('2024-04-20'),
]
recent_halving = None
for halving in halving_dates:
if date >= halving:
recent_halving = halving
if recent_halving is None:
return 0
return (date - recent_halving).days
if __name__ == "__main__":
print("Testing blockchain data loading...\n")
# Test 1: Load complete data
print("="*80)
print("TEST 1: Load complete blockchain data")
print("="*80)
df_complete = load_complete_blockchain_data()
if df_complete is not None:
print(f"\nโœ… Successfully loaded {len(df_complete):,} rows")
print(f" Date range: {df_complete['date'].min().date()} to {df_complete['date'].max().date()}")
print(f" Columns: {list(df_complete.columns)}")
else:
print("\nโš ๏ธ Complete data not available")
# Test 2: Get data for specific date
print("\n" + "="*80)
print("TEST 2: Get data for specific date (2021-06-01)")
print("="*80)
df_2021 = get_blockchain_data_for_date('2021-06-01', window_size=30)
if df_2021 is not None:
print(f"\nโœ… Got {len(df_2021)} days")
print(f" Date range: {df_2021['date'].min().date()} to {df_2021['date'].max().date()}")
print(f" Bitcoin price on 2021-06-01: ${df_2021[df_2021['date'].dt.date == pd.to_datetime('2021-06-01').date()]['bitcoin_price'].values[0]:,.2f}")
# Test 3: Get latest 90 days
print("\n" + "="*80)
print("TEST 3: Get latest 90 days")
print("="*80)
df_latest = get_latest_blockchain_data(days=90)
if df_latest is not None:
print(f"\nโœ… Got {len(df_latest)} days")
print(f" Date range: {df_latest['date'].min().date()} to {df_latest['date'].max().date()}")
print("\n" + "="*80)
print("โœ… ALL TESTS PASSED")
print("="*80)