File size: 16,739 Bytes
32e930f
 
 
bb6290c
32e930f
bb6290c
32e930f
 
bb6290c
 
 
 
 
32e930f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6290c
32e930f
 
 
bb6290c
 
32e930f
 
 
 
bb6290c
d65ab29
bb6290c
 
 
 
 
 
 
 
 
32e930f
 
ed26a7b
bb6290c
ed26a7b
 
 
 
3e25159
 
d6163b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e25159
 
 
ae87734
 
 
3e25159
 
 
d6163b9
ae87734
3e25159
ae87734
3e25159
 
ae87734
3e25159
ae87734
3e25159
 
 
ae87734
 
 
3e25159
d65ab29
bb6290c
ed26a7b
 
 
 
3e25159
 
ae87734
 
 
3e25159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6290c
 
 
 
 
 
32e930f
 
 
 
 
bb6290c
32e930f
 
 
 
 
bb6290c
32e930f
 
bb6290c
ed26a7b
bb6290c
 
 
 
 
ed26a7b
bb6290c
ed26a7b
bb6290c
ed26a7b
 
 
 
3e25159
d65ab29
ed26a7b
32e930f
bb6290c
 
 
 
32e930f
bb6290c
 
ed26a7b
 
 
bb6290c
ed26a7b
 
 
3e25159
bb6290c
ed26a7b
bb6290c
 
32e930f
bb6290c
 
 
32e930f
bb6290c
32e930f
 
bb6290c
32e930f
bb6290c
32e930f
bb6290c
32e930f
 
 
 
 
 
 
 
 
bb6290c
ed26a7b
 
 
bb6290c
ed26a7b
 
 
 
bb6290c
ed26a7b
 
bb6290c
ed26a7b
 
 
 
 
32e930f
 
ed26a7b
 
32e930f
ed26a7b
 
32e930f
97942dd
 
 
 
 
 
 
 
 
 
 
 
 
 
cd2e2b4
 
 
32e930f
97942dd
 
40bdc33
97942dd
 
 
 
 
 
 
 
ed26a7b
 
32e930f
cd2e2b4
 
 
32e930f
 
 
 
 
 
ed26a7b
97942dd
32e930f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6290c
 
 
 
 
32e930f
bb6290c
32e930f
 
bb6290c
ed26a7b
 
bb6290c
ed26a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65ab29
97942dd
 
d65ab29
97942dd
 
 
 
d65ab29
ed26a7b
 
bb6290c
ed26a7b
 
bb6290c
32e930f
bb6290c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e930f
 
 
 
 
 
 
bb6290c
 
ed26a7b
 
 
 
 
 
 
 
d65ab29
ed26a7b
 
 
bb6290c
96f98b7
 
 
 
 
 
 
 
 
 
 
 
 
 
32e930f
 
 
bb6290c
32e930f
 
 
 
 
 
3a13227
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
import os

from preprocessing import get_latest_sequence
from predictor import MineROIPredictor
from fetch_blockchain_data import get_latest_blockchain_data

# internal dummy miner used only for age_days etc. (not shown in UI)
DEFAULT_MINER_NAME = "s19pro"


MODEL_PATH = "best_model_weights.pth"

# Predictor (global)
predictor = None


def init_predictor():
    """Initialize predictor once"""
    global predictor
    if predictor is None:
        predictor = MineROIPredictor(MODEL_PATH)


def init_app():
    """Initialize app (no need for local blockchain_data_complete.csv)."""
    print("\n" + "="*80)
    print("๐Ÿš€ INITIALIZING MINEROI-NET APP")
    print("="*80)
    print("\nUsing live blockchain.com data (last 90 days).")
    print("Model will use the latest 30 days for ROI prediction.")
    print("="*80 + "\n")
    init_predictor()



def predict_roi(machine_price, machine_hashrate, machine_power, machine_efficiency, electricity_rate,machine_release_date):
    """
    Real-time prediction:
    - Uses latest 90 days from blockchain.com
    - Model uses last 30 days
    - Scaler chosen based on electricity_rate:
        < 0.05  -> ethiopia scaler
        0.05-0.09 -> china scaler
        > 0.09 -> texas scaler
    """
    try:
        window_size = 30

        # -------- parse user inputs --------
        miner_price = float(machine_price)
        miner_hashrate = float(machine_hashrate)
        machine_power = float(machine_power)
        machine_efficiency = float(machine_efficiency)
        user_electricity_rate = float(electricity_rate)

        # ----- parse release date -----
        release_str = None
        if machine_release_date is not None:
            release_str = str(machine_release_date).strip()
            if release_str:
                try:
                    # validate format YYYY-MM-DD
                    datetime.strptime(release_str, "%Y-%m-%d")
                except ValueError:
                    error_msg = """
                    <div style='background: #e74c3c; color: white; padding: 20px; border-radius: 10px;'>
                        <h3 style='margin: 0;'>โŒ Invalid release date</h3>
                        <p style='margin: 10px 0 0 0;'>
                            Please enter the machine release date in the format <b>YYYY-MM-DD</b>,
                            for example <code>2020-05-01</code>.
                        </p>
                    </div>
                    """
                    return error_msg, error_msg, None, None
            else:
                # empty box -> fall back to S19 Pro default
                release_str = None


        # ---------------------------------------------------------
        # Bucket electricity rate ONLY to choose scaler
        # The actual feature value will be the user input, repeated
        # for all 30 days in the window.
        # ---------------------------------------------------------
        if user_electricity_rate < 0.05:
            scaler_region = "ethiopia"
            region_bucket = "Low-cost (< $0.05/kWh)"
        elif user_electricity_rate < 1.0:
            scaler_region = "china"
            region_bucket = "Medium-cost ($0.05โ€“$1.00/kWh)"
        else:
            scaler_region = "texas"
            region_bucket = "High-cost (โ‰ฅ $1.00/kWh)"

        # Region for the pipeline (used by get_latest_sequence & predictor)
        region = scaler_region

        # This is the value that will be used for all 30 days in the window
        # (prepare_miner_features repeats it across time).
        electricity_rate_used = user_electricity_rate

        

        print("User machine specs:")
        print(f"  Price:           {miner_price}")
        print(f"  Hashrate (TH/s): {miner_hashrate}")
        print(f"  Power (W):       {machine_power}")
        print(f"  Efficiency:      {machine_efficiency}")
        print(f"  User elec rate:  {user_electricity_rate} USD/kWh")
        print(f"  Bucket region:   {region}")
        print(f"  Elec used in features (all 30 days):  {electricity_rate_used} USD/kWh")
        print("=" * 80 + "\n")


        # # -------- choose scaler region from electricity_rate --------
        # if electricity_rate < 0.05:
        #     scaler_region = "texas"
        #     region_bucket = "Low-cost (< $0.05/kWh)"
        # elif electricity_rate <= 0.09:
        #     scaler_region = "texas"
        #     region_bucket = "Medium-cost ($0.05โ€“$0.09/kWh)"
        # else:
        #     scaler_region = "texas"
        #     region_bucket = "High-cost (> $0.09/kWh)"

        # print("\n" + "=" * 80)
        # print("PREDICTION REQUEST")
        # print("=" * 80)
        # print(f"Scaler region (from electricity rate): {scaler_region}")
        print("=" * 80 + "\n")

        # -------- fetch latest blockchain data (no date input) --------
        print("๐Ÿ“ก Fetching latest blockchain data (last 90 days)...")
        blockchain_df = get_latest_blockchain_data(days=90)

        if blockchain_df is None or len(blockchain_df) < window_size:
            error_msg = f"""
            <div style='background: #e74c3c; color: white; padding: 20px; border-radius: 10px;'>
                <h3 style='margin: 0;'>โŒ Error: Insufficient Data</h3>
                <p style='margin: 10px 0 0 0;'>
                    Not enough blockchain data available.
                    Need at least {window_size} days of historical data.
                </p>
            </div>
            """
            return error_msg, error_msg, None, None

        print(f"โœ… Got {len(blockchain_df)} days of data")
        print(f"   Date range: {blockchain_df['date'].min().date()} to {blockchain_df['date'].max().date()}")

        price_source = "User input"
        print(f"   Using user-provided price: ${miner_price:,.2f}")

        # -------- build sequence with user machine specs --------
        print("\n๐Ÿ”ง Preparing features...")
        sequence, df_window, pred_date = get_latest_sequence(
            blockchain_df,
            DEFAULT_MINER_NAME,          # internal dummy miner, not shown to user
            miner_price,
            scaler_region,
            window_size,
            machine_hashrate=miner_hashrate,
            power=machine_power,
            efficiency=machine_efficiency,
            electricity_rate=electricity_rate_used,
            release_date=release_str
        )
        print(f"โœ… Sequence prepared: {sequence.shape}")

        # -------- model prediction --------
        print("\n๐Ÿค– Running prediction...")
        result = predictor.predict(sequence, scaler_region)
        print(f"โœ… Prediction: {result['predicted_label']} ({result['confidence']:.1%})")

        # -------- build UI outputs --------
        miner_info = create_miner_info(
            miner_price,
            price_source,
            pred_date,
            miner_hashrate,
            machine_power,
            machine_efficiency,
            electricity_rate_used,
            region_bucket,
        )
        prediction_html = create_prediction_html(result, pred_date, window_size)
        confidence_chart = create_confidence_chart(result["probabilities"])
        price_chart = create_price_chart(blockchain_df, window_size)

        print("=" * 80 + "\n")

        return miner_info, prediction_html, confidence_chart, price_chart

    except Exception as e:
        import traceback

        error_details = traceback.format_exc()
        print("\nโŒ ERROR:")
        print(error_details)

        error = f"""
        <div style='background: #e74c3c; color: white; padding: 20px; border-radius: 10px;'>
            <h3 style='margin: 0;'>โŒ Prediction Error</h3>
            <p style='margin: 10px 0 0 0;'>{str(e)}</p>
        </div>
        """
        return error, error, None, None



def create_miner_info(
    price,
    source,
    pred_date,
    machine_hashrate,
    machine_power,
    machine_efficiency,
    electricity_rate,
    region_bucket,
):
    """
    Display miner info for a user-specified machine (no ASIC dropdown).
    """
    elec_rate = float(electricity_rate)
    daily_cost = (float(machine_power) * 24.0 / 1000.0) * elec_rate

    # Color coding for price source
    if source == "API":
        badge_color = "#27ae60"  # Green
    elif source == "User input":
        badge_color = "#3498db"  # Blue
    else:
        badge_color = "#e74c3c"  # Red

    return f"""
    <div style="
        background:#111111;
        padding:20px;
        border-radius:10px;
        border:1px solid #333333;
        color:#ffffff;
        font-size:14px;
    ">
        <h3 style="color:#F7931A; margin-top:0; margin-bottom:10px;">
            Custom ASIC Miner
        </h3>

        <div style="display:grid; grid-template-columns:1fr 1fr; gap:15px;">
            <div style="color:#f5f5f5;">
                <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Hashrate:{machine_hashrate:.2f} TH/s</strong></p>
                <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Power:{machine_power:.1f} W</strong></p>
                <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Efficiency:{machine_efficiency:.2f} W/TH</strong></p>
            </div>
            <div style="color:#f5f5f5;">
                <p style="margin:4px 0;">
                    <strong style="color: #ffffff;">Price (as of {pred_date.date()}):${price:,.2f}</strong>
                    <span style="
                        background:{badge_color};
                        color:#ffffff;
                        padding:2px 8px;
                        border-radius:4px;
                        font-size:11px;
                        margin-left:6px;
                    ">
                        {source}
                    </span>
                </p>
                <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Electricity rate:{elec_rate:.4f} USD/kWh</strong></p>
                <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Cost bucket:{region_bucket}</strong></p>
                <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Estimated daily elec cost:${daily_cost:,.2f}</strong></p>
            </div>
        </div>
    </div>
    """




def create_prediction_html(result, date, window):
    label = result['predicted_label']
    conf = result['confidence']
    
    if 'Unprofitable' in label:
        color, emoji, rec = '#e74c3c', '๐Ÿ”ด', 'NOT RECOMMENDED'
    elif 'Marginal' in label:
        color, emoji, rec = '#f39c12', '๐ŸŸก', 'PROCEED WITH CAUTION'
    else:
        color, emoji, rec = '#27ae60', '๐ŸŸข', 'GOOD OPPORTUNITY'
    
    return f"""
    <div style="background: #1e1e1e; padding: 30px; border-radius: 10px; border: 2px solid {color}; text-align: center; color: #ffffff;">
        <h2 style="color: {color}; margin: 0 0 10px 0;">{emoji} {label}</h2>
        <p style="font-size: 1.2em; margin: 10px 0; color: #ffffff;"><strong style="color: #ffffff;">Confidence: {conf:.1%}</strong></p>
        <p style="font-size: 1.5em; color: {color}; margin: 20px 0;"><strong style="color: {color};">{rec}</strong></p>
        <p style="color: #cccccc; margin: 10px 0 0 0; font-size: 0.9em;">
            Prediction based on data up to: {date.strftime('%Y-%m-%d')}<br>Window: {window} days
        </p>
    </div>
    """


def create_confidence_chart(probs):
    categories = ['Unprofitable', 'Marginal', 'Profitable']
    values = [probs['unprofitable'], probs['marginal'], probs['profitable']]
    colors = ['#e74c3c', '#f39c12', '#27ae60']
    
    fig = go.Figure()
    fig.add_trace(go.Bar(x=categories, y=values, marker_color=colors, text=[f'{v:.1%}' for v in values], textposition='auto'))
    fig.update_layout(title='Prediction Confidence', yaxis_title='Probability', yaxis=dict(range=[0, 1], tickformat='.0%'),
                       template='plotly_dark', height=300, margin=dict(l=0, r=0, t=40, b=0))
    return fig


def create_price_chart(df, window):
    # Show more context if available
    display_days = min(len(df), window * 2)
    df_display = df.tail(display_days)
    
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=df_display['date'], y=df_display['bitcoin_price'], mode='lines', name='Bitcoin Price', line=dict(color='#F7931A', width=2)))
    fig.update_layout(title=f'Bitcoin Price ({len(df_display)} Days)', xaxis_title='Date', yaxis_title='Price (USD)',
                       template='plotly_dark', height=300, margin=dict(l=0, r=0, t=40, b=0))
    return fig


def create_interface():
    with gr.Blocks(title="MineROI-Net") as app:
        gr.Markdown("# ๐Ÿช™ MineROI-Net: Bitcoin Mining Hardware ROI Predictor")
        gr.Markdown(
            "Uses the **latest 30 days** of Bitcoin network data from blockchain.com "
            "to classify your miner as Unprofitable / Marginal / Profitable."
        )

        with gr.Row():
            # ---- Left: inputs ----
            with gr.Column(scale=1):
                gr.Markdown("### Configuration")

                machine_price = gr.Number(
                    label="Machine price (USD)",
                    value=2500.0,
                    precision=2,
                )
                machine_hashrate = gr.Number(
                    label="Machine hashrate (TH/s)",
                    value=100.0,
                    precision=2,
                )
                machine_power = gr.Number(
                    label="Power (W)",
                    value=3000.0,
                    precision=1,
                )
                machine_efficiency = gr.Number(
                    label="Efficiency (W/TH)",
                    value=30.0,
                    precision=2,
                )
                machine_release_date = gr.Textbox(
                    label="Release date (YYYY-MM-DD)",
                    value="2020-05-01",
                    placeholder="e.g. 2020-05-01",
                    lines=1,
                    scale=1,
                    container=True,
                    show_label=True,
                )
                electricity_rate = gr.Number(
                    label="Electricity rate (USD/kWh)",
                    value=0.07,   # neutral default
                    precision=4,
                )

                btn = gr.Button("๐Ÿ”ฎ Predict ROI", variant="primary", size="lg")

                gr.Markdown(
                    """
                    ### About

                    - ๐Ÿ”ด **Unprofitable** (ROI โ‰ค 0)  
                    - ๐ŸŸก **Marginal** (0 < ROI < 1)  
                    - ๐ŸŸข **Profitable** (ROI โ‰ฅ 1)  

                    **Model:** trained on 30-day windows of Bitcoin network and miner features.  
                    **Live mode:** whenever you click *Predict*, the app pulls the latest blockchain data.
                    """
                )

            # ---- Right: outputs ----
            with gr.Column(scale=2):
                gr.Markdown("### Results")
                miner_info = gr.HTML()
                prediction = gr.HTML()
                with gr.Row():
                    conf_plot = gr.Plot()
                    price_plot = gr.Plot()

        # Connect button to prediction function
        btn.click(
            fn=predict_roi,
            inputs=[
                machine_price,
                machine_hashrate,
                machine_power,
                machine_efficiency,
                electricity_rate,
                machine_release_date
            ],
            outputs=[miner_info, prediction, conf_plot, price_plot],
        )


        gr.Markdown(
        """
        > โš ๏ธ **Disclaimer**  
        > This tool is a research demonstration of the MineROI-Net model.  
        > Predictions are **not financial advice** and may be inaccurate.  
        > The model does **not** account for all market conditions and attempts to use recent Bitcoin network signals to estimate ROI classifications.  
        > Results may vary, and users should perform their own due diligence.
        **Paper:** https://arxiv.org/abs/2512.05402  
        **GitHub Repository:** https://github.com/AMAAI-Lab/MineROI-Net
        """
        )


    return app



if __name__ == "__main__":
    # Initialize app (loads complete data into memory)
    init_app()
    
    # Launch
    app = create_interface()
    app.launch()
    # app.launch(server_name="0.0.0.0", server_port=7860, share=True)