File size: 7,781 Bytes
f481275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""Data preprocessing and feature engineering"""

import pandas as pd
import numpy as np
from miner_specs import MINER_SPECS, ELECTRICITY_RATES
from fetch_blockchain_data import get_days_since_halving
from electricity_prices import get_electricity_rate


def engineer_features(blockchain_df):
    """Engineer features from blockchain data - keep it simple"""
    
    df = blockchain_df.copy().sort_values('date').reset_index(drop=True)
    df['date'] = pd.to_datetime(df['date'])
    
    # Just return as is, we'll select features later
    return df


def prepare_miner_features(blockchain_df, miner_name, miner_price, region='texas'):
    """Add miner-specific features - EXACTLY 14 features"""
    
    df = blockchain_df.copy()
    specs = MINER_SPECS[miner_name]
    
    # Keep only these columns from blockchain data
    df = df[['date', 'bitcoin_price', 'difficulty', 'fees', 'hashrate', 'revenue', 'block_reward']].copy()
    df['date'] = pd.to_datetime(df['date'])
    
    # Add miner features
    df['machine_price'] = miner_price
    df['machine_hashrate'] = specs['hashrate']
    df['power'] = specs['power']
    df['efficiency'] = specs['efficiency']
    
    # Calculate age_days (days since miner was released)
    release_date = pd.to_datetime(specs['release_date'])
    df['age_days'] = (df['date'] - release_date).dt.days
    
    # Days since halving
    df['days_since_halving'] = df['date'].apply(get_days_since_halving)
    
    # Revenue potential
    hashrate_hs = df['machine_hashrate'] * 1e12
    btc_per_day = (hashrate_hs * 86400) / (df['difficulty'] * (2**32)) * (df['block_reward'] + (df['fees']/144))
    df['Revenue_Potential'] = btc_per_day * df['bitcoin_price']
    
    # Electricity rate
    # df['electricity_rate'] = ELECTRICITY_RATES.get(region, 0.10)
    df['electricity_rate'] = df['date'].dt.date.apply(
        lambda day: get_electricity_rate(region, day)
    )
    
    return df


def get_latest_sequence(blockchain_df, miner_name, miner_price, region='texas', window_size=30):
    """Get the most recent sequence for prediction - EXACTLY 14 features in CORRECT ORDER"""
    
    df_features = engineer_features(blockchain_df)
    df_miner = prepare_miner_features(df_features, miner_name, miner_price, region)
    
    # CRITICAL: This order MUST match your training data CSV exactly!
    # Your training CSV: bitcoin_price,difficulty,fees,hashrate,revenue,machine_price,machine_hashrate,power,efficiency,block_reward,age_days,days_since_halving,Revenue_Potential,electricity_rate
    feature_cols = [
        'bitcoin_price',      # 1
        'difficulty',         # 2
        'fees',              # 3
        'hashrate',          # 4
        'revenue',           # 5
        'machine_price',     # 6
        'machine_hashrate',  # 7
        'power',             # 8
        'efficiency',        # 9
        'block_reward',      # 10
        'age_days',          # 11
        'days_since_halving',# 12
        'Revenue_Potential', # 13
        'electricity_rate'   # 14
    ]
    
    df_miner = df_miner.dropna().reset_index(drop=True)
    
    if len(df_miner) < window_size:
        raise ValueError(f"Not enough data: need {window_size} days, have {len(df_miner)}")
    
    # Get last window_size days with exactly 14 features
    sequence = df_miner[feature_cols].values[-window_size:]
    latest_date = df_miner['date'].iloc[-1]
    
    # Verify shape
    if sequence.shape[1] != 14:
        raise ValueError(f"Expected 14 features, got {sequence.shape[1]}")
    
    return sequence, feature_cols, latest_date



if __name__ == "__main__":
    from fetch_blockchain_data import get_latest_blockchain_data
    
    print("\n" + "="*80)
    print("TESTING PREPROCESSING PIPELINE")
    print("="*80 + "\n")
    
    # Fetch blockchain data
    print("πŸ“‘ Fetching blockchain data...")
    blockchain_df = get_latest_blockchain_data(days=90)
    
    if blockchain_df is None:
        print("❌ Failed to fetch blockchain data")
        exit(1)
    
    print(f"βœ… Fetched {len(blockchain_df)} days of data\n")
    
    # Test configuration
    miner_name = 's19pro'
    miner_price = 2500
    region = 'texas'
    window_size = 30
    
    print("βš™οΈ  Test Configuration:")
    print(f"   Miner: {MINER_SPECS[miner_name]['full_name']}")
    print(f"   Price: ${miner_price:,}")
    print(f"   Region: {region.title()}")
    print(f"   Window: {window_size} days")
    print(f"   Electricity: ${ELECTRICITY_RATES[region]}/kWh\n")
    
    # Step 1: Engineer features
    print("="*80)
    print("STEP 1: ENGINEER FEATURES")
    print("="*80)
    df_engineered = engineer_features(blockchain_df)
    print(f"βœ… Engineered features")
    print(f"   Shape: {df_engineered.shape}")
    print(f"   Columns: {list(df_engineered.columns)}\n")
    print("First 3 rows:")
    print(df_engineered.head(3))
    print("\nLast 3 rows:")
    print(df_engineered.tail(3))
    
    # Step 2: Prepare miner features
    print("\n" + "="*80)
    print("STEP 2: PREPARE MINER FEATURES")
    print("="*80)
    df_miner = prepare_miner_features(df_engineered, miner_name, miner_price, region)
    print(f"βœ… Added miner-specific features")
    print(f"   Shape: {df_miner.shape}")
    print(f"   Columns: {list(df_miner.columns)}\n")
    
    print("Miner-specific values (constant across all days):")
    print(f"   machine_hashrate: {df_miner['machine_hashrate'].iloc[0]} TH/s")
    print(f"   power: {df_miner['power'].iloc[0]} W")
    print(f"   efficiency: {df_miner['efficiency'].iloc[0]} W/TH")
    print(f"   machine_price: ${df_miner['machine_price'].iloc[0]:,.2f}")
    print(f"   electricity_rate: ${df_miner['electricity_rate'].iloc[0]:.4f}/kWh")
    
    print("\nDynamic values (change over time):")
    print(f"   age_days: {df_miner['age_days'].iloc[0]} β†’ {df_miner['age_days'].iloc[-1]} days")
    print(f"   days_since_halving: {df_miner['days_since_halving'].iloc[0]} β†’ {df_miner['days_since_halving'].iloc[-1]} days")
    print(f"   Revenue_Potential: ${df_miner['Revenue_Potential'].iloc[0]:.2f} β†’ ${df_miner['Revenue_Potential'].iloc[-1]:.2f}/day")
    
    print("\nFirst 3 rows:")
    print(df_miner.head(3))
    print("\nLast 3 rows:")
    print(df_miner.tail(3))
    
    # Step 3: Get latest sequence
    print("\n" + "="*80)
    print("STEP 3: GET LATEST SEQUENCE")
    print("="*80)
    sequence, feature_cols, latest_date = get_latest_sequence(blockchain_df, miner_name, miner_price, region, window_size)
    
    print(f"βœ… Created sequence for model")
    print(f"   Shape: {sequence.shape}")
    print(f"   Expected: ({window_size}, 14)")
    print(f"   Latest date: {latest_date.strftime('%Y-%m-%d')}\n")
    
    print("14 Features (in order):")
    for i, col in enumerate(feature_cols, 1):
        print(f"   {i:2d}. {col:25s} β†’ First: {sequence[0, i-1]:>15.2f}  Last: {sequence[-1, i-1]:>15.2f}")
    
    print("\n" + "="*80)
    print("SEQUENCE STATISTICS")
    print("="*80)
    print("\nFirst day in sequence:")
    for i, col in enumerate(feature_cols):
        print(f"   {col:25s} = {sequence[0, i]:>15.2f}")
    
    print(f"\nLast day in sequence (for prediction on {latest_date.strftime('%Y-%m-%d')}):")
    for i, col in enumerate(feature_cols):
        print(f"   {col:25s} = {sequence[-1, i]:>15.2f}")
    
    # Show some statistics
    print("\n" + "="*80)
    print("FEATURE RANGES")
    print("="*80)
    for i, col in enumerate(feature_cols):
        min_val = sequence[:, i].min()
        max_val = sequence[:, i].max()
        mean_val = sequence[:, i].mean()
        print(f"{col:25s} β†’ Min: {min_val:>12.2f}  Max: {max_val:>12.2f}  Mean: {mean_val:>12.2f}")
    
    print("\n" + "="*80)
    print("βœ… PREPROCESSING PIPELINE TEST COMPLETE")
    print("="*80 + "\n")