Spaces:
Runtime error
Runtime error
fix-oom (#15)
Browse files- Custom device map to reduce memory consumption (7fbd1fa2e4186d15e71f63f19ac7285d798d0816)
app.py
CHANGED
|
@@ -7,7 +7,15 @@ from transformers import FuyuForCausalLM, FuyuProcessor
|
|
| 7 |
model_id = "adept/fuyu-8b"
|
| 8 |
dtype = torch.bfloat16
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
processor = FuyuProcessor.from_pretrained(model_id)
|
| 12 |
|
| 13 |
CAPTION_PROMPT = "Generate a coco-style caption.\n"
|
|
@@ -36,7 +44,7 @@ def pad_to_size(image, canvas_width=1920, canvas_height=1080):
|
|
| 36 |
|
| 37 |
def predict(image, prompt):
|
| 38 |
# image = image.convert('RGB')
|
| 39 |
-
model_inputs = processor(text=prompt, images=[image])
|
| 40 |
|
| 41 |
generation_output = model.generate(**model_inputs, max_new_tokens=50)
|
| 42 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
|
@@ -71,7 +79,7 @@ def localize(image, query):
|
|
| 71 |
padded = resize_to_max(image)
|
| 72 |
padded = pad_to_size(padded)
|
| 73 |
|
| 74 |
-
model_inputs = processor(text=prompt, images=[padded])
|
| 75 |
|
| 76 |
outputs = model.generate(**model_inputs, max_new_tokens=40)
|
| 77 |
post_processed_bbox_tokens = processor.post_process_box_coordinates(outputs)[0]
|
|
|
|
| 7 |
model_id = "adept/fuyu-8b"
|
| 8 |
dtype = torch.bfloat16
|
| 9 |
|
| 10 |
+
device_map = {
|
| 11 |
+
"language_model.model.embed_tokens": "cpu",
|
| 12 |
+
"language_model.model.layers": 0,
|
| 13 |
+
"language_model.model.final_layernorm": 0,
|
| 14 |
+
"language_model.lm_head": "cpu",
|
| 15 |
+
"vision_embed_tokens": "cpu",
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
model = FuyuForCausalLM.from_pretrained(model_id, device_map=device_map, torch_dtype=dtype)
|
| 19 |
processor = FuyuProcessor.from_pretrained(model_id)
|
| 20 |
|
| 21 |
CAPTION_PROMPT = "Generate a coco-style caption.\n"
|
|
|
|
| 44 |
|
| 45 |
def predict(image, prompt):
|
| 46 |
# image = image.convert('RGB')
|
| 47 |
+
model_inputs = processor(text=prompt, images=[image])
|
| 48 |
|
| 49 |
generation_output = model.generate(**model_inputs, max_new_tokens=50)
|
| 50 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
|
|
|
| 79 |
padded = resize_to_max(image)
|
| 80 |
padded = pad_to_size(padded)
|
| 81 |
|
| 82 |
+
model_inputs = processor(text=prompt, images=[padded])
|
| 83 |
|
| 84 |
outputs = model.generate(**model_inputs, max_new_tokens=40)
|
| 85 |
post_processed_bbox_tokens = processor.post_process_box_coordinates(outputs)[0]
|