File size: 11,432 Bytes
5b6c556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import sys
from pathlib import Path
import requests
import json
import time
from tqdm import tqdm

# Add root project dir to path
sys.path.append(str(Path(__file__).parent.parent))
from function_vectors.data.multilingual_function_categories import FUNCTION_CATEGORIES, FUNCTION_TYPES

# API configuration for Qwen.
QWEN_API_CONFIG = {
    "api_key": "6e3def45d61b0b20547a1fcbab6464d8",
    "api_endpoint": "https://chat-ai.academiccloud.de/v1",
    "model": "qwen2.5-vl-72b-instruct",
    "rate_limit_per_minute": 2,
}

# --- Translation Logic ---

def translate_text(text, target_language="German"):
    # Translates a single string using the Qwen API.
    headers = {
        "Authorization": f"Bearer {QWEN_API_CONFIG['api_key']}",
        "Content-Type": "application/json"
    }
    
    prompt = f"Translate the following English text to {target_language}. Respond with ONLY the translated text, without any introductory phrases, explanations, or quotation marks. The original text is:\n\n'{text}'"

    data = {
        "model": QWEN_API_CONFIG["model"],
        "messages": [{"role": "user", "content": prompt}],
        "max_tokens": 150,
        "temperature": 0.1,
    }
    
    try:
        response = requests.post(
            f"{QWEN_API_CONFIG['api_endpoint']}/chat/completions",
            headers=headers,
            json=data,
            timeout=60
        )
        
        if response.status_code == 200:
            result = response.json()
            translated_text = result["choices"][0]["message"]["content"].strip()
            # Clean up quotes from the model's response.
            if translated_text.startswith('"') and translated_text.endswith('"'):
                translated_text = translated_text[1:-1]
            return translated_text
        elif response.status_code == 429:
            # Handle rate limiting.
            reset_time = response.headers.get('RateLimit-Reset', '0')
            try:
                wait_seconds = int(reset_time)
                print(f"Hourly rate limit reached. Waiting {wait_seconds} seconds for reset...")
                return f"RATE_LIMIT_HOURLY:{wait_seconds}"
            except ValueError:
                print("Rate limit exceeded. Waiting 60 seconds...")
                return "RATE_LIMIT_EXCEEDED"
        else:
            print(f"API Error: Status {response.status_code}, Response: {response.text}")
            return None
            
    except requests.RequestException as e:
        print(f"Request failed: {e}")
        return None

def translate_batch_texts(texts, target_language="German"):
    # Translates a batch of strings in one API call.
    headers = {
        "Authorization": f"Bearer {QWEN_API_CONFIG['api_key']}",
        "Content-Type": "application/json"
    }
    # A stronger prompt to ensure full translation.
    batch_prompt = (
        f"Translate the following English texts to {target_language}. "
        "For each text, translate ALL words and phrases, including any words in quotation marks, into natural German. "
        "Do NOT leave any English words in the translation. Respond with ONLY the German translations, one per line, in the same order.\n\n"
    )
    for i, text in enumerate(texts, 1):
        batch_prompt += f"{i}. {text}\n"
    batch_prompt += "\nProvide the German translations in the same order, one per line:"
    data = {
        "model": QWEN_API_CONFIG["model"],
        "messages": [{"role": "user", "content": batch_prompt}],
        "max_tokens": 300,  # Increased for batch processing
        "temperature": 0.1,
    }
    try:
        response = requests.post(
            f"{QWEN_API_CONFIG['api_endpoint']}/chat/completions",
            headers=headers,
            json=data,
            timeout=60
        )
        if response.status_code == 200:
            result = response.json()
            translated_text = result["choices"][0]["message"]["content"].strip()
            # Split the response into individual lines.
            lines = [line.strip() for line in translated_text.split('\n') if line.strip()]
            cleaned_translations = []
            for line in lines:
                # Remove numbering if the model adds it.
                if line and line[0].isdigit() and '.' in line:
                    line = line.split('.', 1)[1].strip()
                # Clean up quotes.
                if line.startswith('"') and line.endswith('"'):
                    line = line[1:-1]
                if line:
                    cleaned_translations.append(line)
            # Make sure we have the right number of translations.
            if len(cleaned_translations) >= len(texts):
                return cleaned_translations[:len(texts)]
            else:
                print(f"Warning: Expected {len(texts)} translations, got {len(cleaned_translations)}")
                # Pad with error messages if some translations failed.
                while len(cleaned_translations) < len(texts):
                    cleaned_translations.append(f"TRANSLATION_ERROR: {texts[len(cleaned_translations)]}")
                return cleaned_translations
        elif response.status_code == 429:
            # Handle rate limiting.
            reset_time = response.headers.get('RateLimit-Reset', '0')
            try:
                wait_seconds = int(reset_time)
                print(f"Hourly rate limit reached. Waiting {wait_seconds} seconds for reset...")
                return f"RATE_LIMIT_HOURLY:{wait_seconds}"
            except ValueError:
                print("Rate limit exceeded. Waiting 60 seconds...")
                return "RATE_LIMIT_EXCEEDED"
        else:
            print(f"API Error: Status {response.status_code}, Response: {response.text}")
            return None
    except requests.RequestException as e:
        print(f"Request failed: {e}")
        return None

def update_multilingual_categories_file(new_categories):
    # Updates the multilingual_function_categories.py file.
    file_path = Path(__file__).parent / "data" / "multilingual_function_categories.py"
    
    # Create the new file content.
    file_content = "# -*- coding: utf-8 -*-\n"
    file_content += '"""\nThis file contains the multilingual prompts for function vector analysis.\n'
    file_content += 'It is automatically updated by the translate_prompts.py script.\n"""\n\n'
    
    # Format the FUNCTION_TYPES dictionary.
    ft_content = "FUNCTION_TYPES = {\n"
    for ft, cats in FUNCTION_TYPES.items():
        ft_content += f'    "{ft}": [\n'
        for cat in cats:
            ft_content += f'        "{cat}",\n'
        ft_content += "    ],\n"
    ft_content += "}\n\n"

    file_content += ft_content

    # Add the function categories.
    file_content += f"FUNCTION_CATEGORIES = {json.dumps(new_categories, indent=4, ensure_ascii=False)}\n"
    
    with open(file_path, "w", encoding="utf-8") as f:
        f.write(file_content)
    print(f"\n✅ Progress saved to '{file_path}'")


def main():
    # Translates all prompts and updates the file.
    print("🚀 Starting batch translation of prompts to German...")

    # Load existing categories to resume from where we left off.
    translated_categories = FUNCTION_CATEGORIES.copy()
    
    # Count how many prompts need to be translated.
    total_prompts = sum(len(prompts.get('en', [])) for prompts in FUNCTION_CATEGORIES.values())
    
    # Set up a progress bar.
    with tqdm(total=total_prompts, desc="Translating Prompts") as pbar:
        # Check how many are already translated.
        already_translated_count = 0
        for category_key, data in FUNCTION_CATEGORIES.items():
            if 'de' not in translated_categories.get(category_key, {}):
                if category_key not in translated_categories:
                    translated_categories[category_key] = {}
                translated_categories[category_key]['de'] = []

            if 'de' in translated_categories[category_key]:
                 already_translated_count += len(translated_categories[category_key]['de'])
        pbar.update(already_translated_count)

        # Get a list of all prompts that still need to be translated.
        all_prompts_to_translate = []
        prompt_mapping = []
        
        for category_key, data in FUNCTION_CATEGORIES.items():
            english_prompts = data.get('en', [])
            
            # Make sure the 'de' key exists.
            if 'de' not in translated_categories[category_key]:
                translated_categories[category_key]['de'] = []
            
            german_prompts = translated_categories[category_key]['de']

            # Skip if this category is already done.
            if len(german_prompts) == len(english_prompts):
                continue

            # Add prompts that are missing a translation.
            for i in range(len(german_prompts), len(english_prompts)):
                all_prompts_to_translate.append(english_prompts[i])
                prompt_mapping.append((category_key, i))

        # Process the prompts in batches.
        batch_size = 6
        for i in range(0, len(all_prompts_to_translate), batch_size):
            batch_prompts = all_prompts_to_translate[i:i + batch_size]
            batch_mapping = prompt_mapping[i:i + batch_size]
            
            # Wait between batches to avoid hitting the rate limit.
            time.sleep(30)
            
            translated_batch = translate_batch_texts(batch_prompts)
            
            # Handle rate limit responses.
            if translated_batch and isinstance(translated_batch, str) and translated_batch.startswith("RATE_LIMIT_HOURLY:"):
                wait_seconds = int(translated_batch.split(":")[1])
                print(f"Waiting {wait_seconds} seconds for hourly rate limit reset...")
                time.sleep(wait_seconds)
                # Retry the batch.
                translated_batch = translate_batch_texts(batch_prompts)
            
            retry_wait = 60
            while translated_batch == "RATE_LIMIT_EXCEEDED":
                # Wait and retry if we hit the rate limit.
                print(f"Waiting for {retry_wait} seconds due to rate limit...")
                time.sleep(retry_wait)
                translated_batch = translate_batch_texts(batch_prompts)
                retry_wait *= 1.5
            
            if translated_batch and isinstance(translated_batch, list):
                # Add the new translations to our data.
                for j, (category_key, prompt_idx) in enumerate(batch_mapping):
                    if j < len(translated_batch):
                        translated_categories[category_key]['de'].append(translated_batch[j])
                
                # Save progress every so often.
                if (pbar.n + len(batch_prompts)) % 30 == 0:
                    update_multilingual_categories_file(translated_categories)
                
                pbar.update(len(batch_prompts))
            else:
                print(f"❌ Failed to translate batch. Stopping.")
                # Save any progress we made before stopping.
                update_multilingual_categories_file(translated_categories)
                return

    # Final save at the end.
    update_multilingual_categories_file(translated_categories)
    print("\n✅ All prompts translated and file updated successfully.")

if __name__ == "__main__":
    main()