Spaces:
Sleeping
Sleeping
File size: 6,191 Bytes
5b6c556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import sys
from pathlib import Path
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from tqdm import tqdm
import json
import plotly.graph_objects as go
from sklearn.decomposition import PCA
# Adjust path to import from the new 'data' directory
sys.path.append(str(Path(__file__).resolve().parent.parent))
from function_vectors.data.multilingual_function_categories import FUNCTION_CATEGORIES, FUNCTION_TYPES
def generate_all_assets():
# Generates all pre-computed assets for the Function Vectors page.
print("π Starting generation of all page assets...")
# Load the model and tokenizer.
print("π§ Loading OLMo-2-7B model...")
try:
model_path = "./models/OLMo-2-1124-7B"
device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
output_hidden_states=True
)
print(f"β
Model loaded successfully on device: {device}")
except Exception as e:
print(f"β Error loading model: {e}")
return
# Function to get activation vectors.
def get_activation_for_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs, output_hidden_states=True)
last_token_pos = inputs['attention_mask'].sum(dim=1) - 1
last_hidden_state = outputs.hidden_states[-1]
activation = last_hidden_state[0, last_token_pos[0], :].cpu().numpy()
return activation.astype(np.float64)
# Generate and save function vectors.
output_dir = Path(__file__).parent / "data" / "vectors"
output_dir.mkdir(parents=True, exist_ok=True)
all_vectors_by_lang = {}
for lang in ["en", "de"]:
print(f"\nπ Generating vectors for {lang.upper()} prompts...")
category_vectors = {}
for category_key, data in tqdm(FUNCTION_CATEGORIES.items(), desc=f"Processing {lang.upper()}"):
prompts = data.get(lang, [])
if not prompts: continue
activations = [get_activation_for_prompt(p) for p in prompts]
if activations:
category_vectors[category_key] = np.mean(activations, axis=0)
all_vectors_by_lang[lang] = category_vectors.copy()
output_path = output_dir / f"{lang}_category_vectors.npz"
np.savez_compressed(output_path, **category_vectors)
print(f"β
Saved {lang.upper()} vectors to: {output_path}")
# Generate and save 3D PCA visualizations.
viz_dir = Path(__file__).parent / "data" / "visualizations"
viz_dir.mkdir(parents=True, exist_ok=True)
for lang, vectors_to_plot in all_vectors_by_lang.items():
print(f"\nπ¨ Generating 3D PCA visualization for {lang.upper()}...")
if not vectors_to_plot:
print(f"β οΈ Skipping PCA for {lang.upper()} as vectors are missing.")
continue
try:
categories = list(vectors_to_plot.keys())
vectors = np.vstack([vectors_to_plot[cat] for cat in categories])
pca = PCA(n_components=3)
reduced_vectors = pca.fit_transform(vectors)
# Define colors and symbols for the plot.
func_type_keys = list(FUNCTION_TYPES.keys())
colors = ["skyblue", "lightgreen", "salmon", "orchid", "gold", "lightcoral"]
symbols = ["circle", "diamond", "square", "cross", "diamond-open", "square-open"]
function_type_colors = {key: colors[i % len(colors)] for i, key in enumerate(func_type_keys)}
plotly_symbols = {key: symbols[i % len(symbols)] for i, key in enumerate(func_type_keys)}
fig = go.Figure()
for func_type_key, cats in FUNCTION_TYPES.items():
func_categories = [cat for cat in cats if cat in categories]
if func_categories:
indices = [categories.index(cat) for cat in func_categories]
fig.add_trace(go.Scatter3d(
x=reduced_vectors[indices, 0], y=reduced_vectors[indices, 1], z=reduced_vectors[indices, 2],
mode='markers',
marker=dict(size=8, color=function_type_colors.get(func_type_key, 'gray'), symbol=plotly_symbols.get(func_type_key, 'circle'), line=dict(width=1, color='black'), opacity=0.8),
name=func_type_key.replace("_", " ").title(),
text=[cat.replace("_", " ").title() for cat in func_categories],
hovertemplate="<b>%{text}</b><br>PC1: %{x:.3f}<br>PC2: %{y:.3f}<br>PC3: %{z:.3f}<extra></extra>"
))
fig.update_layout(
title=f"3D PCA of {lang.upper()} Function Vector Categories",
width=1400, height=900,
scene=dict(xaxis_title='PC1', yaxis_title='PC2', zaxis_title='PC3'),
legend_title_text='Function Types'
)
# Save the plot to an HTML file.
file_suffix = "pca_3d_categories_layer_-1.html"
viz_path = viz_dir / f"{lang}_{file_suffix}"
fig.write_html(viz_path)
print(f"β
Saved {lang.upper()} 3D PCA visualization to: {viz_path}")
except Exception as e:
print(f"β Failed to generate PCA plot for {lang.upper()}: {e}")
# Layer evolution data is handled dynamically in the app.
print("\nβ
Layer Evolution analysis is handled dynamically in the app. No pre-computation needed.")
print("\nπ All assets generated successfully!")
if __name__ == "__main__":
generate_all_assets() |