Spaces:
Sleeping
Sleeping
File size: 98,751 Bytes
5b6c556 e8099ac 5b6c556 221a3f0 5b6c556 221a3f0 871d8d6 221a3f0 5b6c556 221a3f0 5b6c556 f4747e4 5b6c556 871d8d6 5b6c556 871d8d6 5b6c556 221a3f0 5b6c556 221a3f0 5b6c556 221a3f0 5b6c556 871d8d6 5b6c556 221a3f0 5b6c556 221a3f0 5b6c556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 |
import streamlit as st
import os
from pathlib import Path
import base64
import sys
import numpy as np
import matplotlib.pyplot as plt
import torch
import pandas as pd
from utilities.localization import tr
import plotly.graph_objects as go
from sklearn.decomposition import PCA
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import Dict, List
import requests
import json
from PIL import Image
from io import BytesIO
import base64
import markdown
from datetime import datetime
from utilities.feedback_survey import display_function_vector_feedback
import gc
import colorsys
import re
from thefuzz import process
import threading
# Directory for visualizations.
VIZ_DIR = Path(__file__).parent / "data" / "visualizations"
# Add the project root to the path.
sys.path.append(str(Path(__file__).resolve().parent.parent))
from function_vectors.data.multilingual_function_categories import FUNCTION_TYPES, FUNCTION_CATEGORIES
from utilities.utils import init_qwen_api
# Define colors and symbols for the plots.
FUNCTION_TYPE_COLORS = {
"abstractive_tasks": "#87CEEB", # skyblue
"multiple_choice_qa": "#90EE90", # lightgreen
"text_classification": "#FA8072", # salmon
"extractive_tasks": "#DA70D6", # orchid
"named_entity_recognition": "#FFD700", # gold
"text_generation": "#F08080" # lightcoral
}
# HTML entities for shapes in the legend.
PLOTLY_SYMBOLS_HTML = {
"abstractive_tasks": "β", "multiple_choice_qa": "β",
"text_classification": "β ", "extractive_tasks": "β",
"named_entity_recognition": "β", "text_generation": "β‘"
}
# Plotly symbol names for the plot.
PLOTLY_SYMBOLS = {
"abstractive_tasks": "circle", "multiple_choice_qa": "diamond",
"text_classification": "square", "extractive_tasks": "cross",
"named_entity_recognition": "diamond-open", "text_generation": "square-open"
}
# Helper function to format category names.
def format_category_name(name):
# Formats a category key into a readable name.
# Make the check case-insensitive.
if name.lower().endswith('_qa'):
# Format names that end in '_qa'.
prefix = name[:-3].replace('_', ' ').replace('-', ' ').title()
formatted_name = f"{prefix} QA"
else:
# Default formatting for other names.
formatted_name = name.replace('_', ' ').replace('-', ' ').title()
return tr(formatted_name)
def show_function_vectors_page():
# Shows the main Function Vector Analysis page.
# Add CSS for Bootstrap icons.
st.markdown('<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.10.5/font/bootstrap-icons.css">', unsafe_allow_html=True)
# Initialize a lock in the session state to prevent concurrent API calls.
if 'api_lock' not in st.session_state:
st.session_state.api_lock = threading.Lock()
st.markdown(f"<h1>{tr('fv_page_title')}</h1>", unsafe_allow_html=True)
st.markdown(f"""{tr('fv_page_desc')}""", unsafe_allow_html=True)
# Check if the visualization directory exists.
if not VIZ_DIR.exists():
st.error(tr('viz_dir_not_found_error'))
return
# Show examples of the categories.
st.header(tr('dataset_overview'))
st.markdown(tr('dataset_overview_desc_long'))
display_category_examples()
st.markdown("---")
# Add a visual explanation of how function vectors are made.
st.html(f"""
<div style='color: #ffffff; margin: 2rem 0;'>
<h4 style='color: #87CEEB; margin-top: 0; text-align: center; margin-bottom: 1.5rem;'>{tr('how_vectors_are_made_header')}</h4>
<p style="text-align: center; max-width: 600px; margin: auto; margin-bottom: 2rem;">{tr('how_vectors_are_made_desc')}</p>
<div style="display: flex; flex-direction: column; align-items: center; font-family: 'SF Mono', 'Consolas', 'Menlo', monospace; gap: 0.2rem;">
<!-- STEP 1: INPUT -->
<div style="background-color: #333; padding: 0.8rem; border-radius: 8px; width: 90%; max-width: 600px; text-align: center; border: 1px solid #444;">
<h5 style="margin: 0 0 0.5rem 0; color: #87CEEB; font-size: 0.9rem; letter-spacing: 1px; font-weight: bold;"><i class="bi bi-keyboard"></i> {tr('how_vectors_are_made_step1_title')}</h5>
<code style="background: none; color: #EAEAEA; font-size: 1em;">"{tr('how_vectors_are_made_step1_example')}"</code>
</div>
<i class="bi bi-arrow-down" style="font-size: 2rem; color: #666; margin: 0.5rem 0;"></i>
<!-- STEP 2: TOKENIZER -->
<div style="background-color: #333; padding: 0.8rem; border-radius: 8px; width: 90%; max-width: 600px; text-align: center; border: 1px solid #444;">
<h5 style="margin: 0 0 0.5rem 0; color: #87CEEB; font-size: 0.9rem; letter-spacing: 1px; font-weight: bold;"><i class="bi bi-segmented-nav"></i> {tr('how_vectors_are_made_step2_title')}</h5>
<code style="background: none; color: #EAEAEA; font-size: 1em;">{tr('how_vectors_are_made_step2_example')}</code>
</div>
<i class="bi bi-arrow-down" style="font-size: 2rem; color: #666; margin: 0.5rem 0;"></i>
<!-- STEP 3: MODEL -->
<div style="background-color: #333; padding: 0.8rem; border-radius: 8px; width: 90%; max-width: 600px; text-align: center; border: 1px solid #444;">
<h5 style="margin: 0 0 0.5rem 0; color: #87CEEB; font-size: 0.9rem; letter-spacing: 1px; font-weight: bold;"><i class="bi bi-cpu-fill"></i> {tr('how_vectors_are_made_step3_title')}</h5>
<code style="background: none; color: #EAEAEA; font-size: 1em;">{tr('how_vectors_are_made_step3_desc')}</code>
</div>
<i class="bi bi-arrow-down" style="font-size: 2rem; color: #666; margin: 0.5rem 0;"></i>
<!-- STEP 4: FINAL LAYER -->
<div style="background-color: #333; padding: 0.8rem; border-radius: 8px; width: 90%; max-width: 600px; text-align: center; border: 1px solid #444;">
<h5 style="margin: 0 0 0.5rem 0; color: #87CEEB; font-size: 0.9rem; letter-spacing: 1px; font-weight: bold;"><i class="bi bi-layer-forward"></i> {tr('how_vectors_are_made_step4_title')}</h5>
<code style="background: none; color: #EAEAEA; font-size: 1em;">{tr('how_vectors_are_made_step4_desc')}</code>
</div>
<i class="bi bi-arrow-down" style="font-size: 2rem; color: #666; margin: 0.5rem 0;"></i>
<!-- STEP 5: OUTPUT -->
<div style="background-color: #1e1e1e; padding: 1.2rem; border-radius: 8px; width: 90%; max-width: 600px; text-align: center; border: 2px solid #90EE90;">
<h5 style="margin: 0 0 0.5rem 0; color: #90EE90; font-size: 1rem; letter-spacing: 1px; font-weight: bold;"><i class="bi bi-check-circle-fill"></i> {tr('how_vectors_are_made_step5_title')}</h5>
<code style="background: none; color: #90EE90; font-weight: bold; font-size: 1.1em;">[ -0.23, 1.45, -0.89, ... ]</code>
</div>
</div>
</div>
""")
st.markdown("---")
analysis_run = 'analysis_results' in st.session_state and 'user_input' in st.session_state
# --- Initial Visualization ---
# Show the 3D PCA plot before an analysis is run.
if not analysis_run:
st.markdown(f"<h2>{tr('pca_3d_section_header')}</h2>", unsafe_allow_html=True)
display_3d_pca_visualization(show_description=True)
st.markdown("---")
# The interactive analysis section is always visible.
st.markdown(f"<h2>{tr('interactive_analysis_section_header')}</h2>", unsafe_allow_html=True)
display_interactive_analysis()
# If an analysis was run, show the results.
if analysis_run:
st.markdown("---")
with st.spinner(tr('running_analysis_spinner')):
display_analysis_results(st.session_state.analysis_results, st.session_state.user_input)
#if 'analysis_results' in st.session_state:
# display_function_vector_feedback()
def _trigger_and_rerun_analysis(input_text, include_attribution, include_evolution, enable_ai_explanation):
# Triggers an analysis, saves the results, and reruns the app.
if not input_text.strip():
st.warning("Please enter a prompt to analyze.")
return
st.session_state.user_input = input_text.strip()
st.session_state.enable_ai_explanation = enable_ai_explanation
with st.spinner(tr('running_analysis_spinner')):
try:
results = run_interactive_analysis(input_text.strip(), True, True, enable_ai_explanation)
if results:
st.session_state.analysis_results = results
# Process and store AI explanations if enabled.
if enable_ai_explanation or "pca_explanation" in results: # Also process if loaded from cache
if 'api_error' in results:
st.warning(results['api_error'])
if 'pca_explanation' in results and results['pca_explanation']:
# Split the explanation into parts based on headings.
explanation_parts = re.split(r'(?=\n####\s)', results['pca_explanation'].strip())
explanation_parts = [p.strip() for p in explanation_parts if p.strip()]
st.session_state.explanation_part_1 = explanation_parts[0] if len(explanation_parts) > 0 else ""
st.session_state.explanation_part_2 = explanation_parts[1] if len(explanation_parts) > 1 else ""
st.session_state.explanation_part_3 = explanation_parts[2] if len(explanation_parts) > 2 else ""
if 'evolution_explanation' in results and results['evolution_explanation']:
# Split the evolution explanation into parts.
evo_parts = re.split(r'(?=\n####\s)', results['evolution_explanation'].strip())
evo_parts = [p.strip() for p in evo_parts if p.strip()]
st.session_state.evolution_explanation_part_1 = evo_parts[0] if len(evo_parts) > 0 else ""
st.session_state.evolution_explanation_part_2 = evo_parts[1] if len(evo_parts) > 1 else ""
if 'example_text' in st.session_state:
del st.session_state['example_text']
st.rerun()
else:
st.error(tr('analysis_failed_error'))
except Exception as e:
st.error(tr('analysis_error').format(e=str(e)))
st.info(tr('ensure_model_and_data_info'))
def display_interactive_analysis():
# Shows the interactive analysis section of the page.
# Show a section with example queries.
st.markdown(f"**{tr('example_queries_header')}**", unsafe_allow_html=True)
st.markdown(tr('example_queries_desc'))
current_lang = st.session_state.get('lang', 'en')
examples = {
'en': [
"Summarize the plot of 'Hamlet' in one sentence:",
"The main ingredient in a Negroni cocktail is",
"A Python function that calculates the factorial of a number is:",
"The sentence 'The cake was eaten by the dog' is in the following voice:",
"A good headline for an article about a new breakthrough in battery technology would be:",
"The capital of Mongolia is",
"The literary device in the phrase 'The wind whispered through the trees' is",
"The French translation of 'I would like to order a coffee, please.' is:",
"The movie 'The Matrix' can be classified into the following genre:"
],
'de': [
"Fassen Sie die Handlung von 'Hamlet' in einem Satz zusammen:",
"Die Hauptzutat in einem Negroni-Cocktail ist",
"Eine Python-Funktion, die die FakultΓ€t einer Zahl berechnet, lautet:",
"Der Satz 'Der Kuchen wurde vom Hund gefressen' steht in folgender Form:",
"Eine gute Γberschrift fΓΌr einen Artikel ΓΌber einen neuen Durchbruch in der Batterietechnologie wΓ€re:",
"Die Hauptstadt der Mongolei ist",
"Das literarische Stilmittel im Satz 'Der Wind flΓΌsterte durch die BΓ€ume' ist",
"Die franzΓΆsische Γbersetzung von 'Ich mΓΆchte bitte einen Kaffee bestellen.' lautet:",
"Der Film 'Die Matrix' lΓ€sst sich in folgendes Genre einteilen:"
]
}
# Display the examples in a 3-column grid.
example_cols = st.columns(3)
for i, example in enumerate(examples[current_lang]):
with example_cols[i % 3]:
if st.button(example, key=f"fv_example_{i}", use_container_width=True):
# Trigger an analysis when an example is clicked.
_trigger_and_rerun_analysis(example, True, True, True)
# Input section
# Add some custom CSS to style the text area.
st.markdown("""
<style>
.stTextArea > div > div > textarea {
background-color: #2b2b2b !important;
border: 2px solid #4a90e2 !important;
border-radius: 10px !important;
color: #ffffff !important;
}
.stTextArea > div > div > textarea::placeholder {
color: #888888 !important;
}
.stTextArea > div > div > textarea:focus {
border-color: #4a90e2 !important;
box-shadow: 0 0 0 2px rgba(74, 144, 226, 0.2) !important;
}
.custom-label {
font-size: 1.25rem !important;
font-weight: bold !important;
margin-bottom: 0.5rem !important;
}
</style>
""", unsafe_allow_html=True)
# Text input area that uses the session state.
# Use an example as the default value if one was clicked.
default_value = st.session_state.get('user_input', '')
st.markdown(f"<div class='custom-label'>{tr('input_text_label')}</div>", unsafe_allow_html=True)
input_text = st.text_area(
"text_area_for_analysis",
value=default_value,
placeholder="Sadly no GPU available. Please select an example above.",
height=100,
help=tr('input_text_help'),
label_visibility="collapsed",
disabled=True
)
# Checkbox for AI explanations.
enable_ai_explanation = st.checkbox(tr('enable_ai_explanation_checkbox'), value=True, help=tr('enable_ai_explanation_help'))
# Analysis button.
if st.button(tr('analyze_button'), type="primary", disabled=True):
_trigger_and_rerun_analysis(input_text, True, True, enable_ai_explanation)
def load_model_and_tokenizer():
# Loads and caches the model and tokenizer.
MODEL_PATH = "./models/OLMo-2-1124-7B"
device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
output_hidden_states=True
)
return model, tokenizer, device
@st.cache_data
def _load_precomputed_vectors(lang='en', cache_version="function-vectors-2025-11-09"):
# Loads pre-computed vectors from a file.
vector_path = Path(__file__).parent / f"data/vectors/{lang}_category_vectors.npz"
if not vector_path.exists():
return None, None, f"Vector file not found for language '{lang}': {vector_path}"
try:
loaded_data = np.load(vector_path, allow_pickle=True)
category_vectors = {key: loaded_data[key] for key in loaded_data.files}
function_type_vectors = {}
for func_type_key, category_keys in FUNCTION_TYPES.items():
type_vectors = [category_vectors[cat_key] for cat_key in category_keys if cat_key in category_vectors]
if type_vectors:
function_type_vectors[func_type_key] = np.mean(type_vectors, axis=0)
return function_type_vectors, category_vectors, None
except Exception as e:
return None, None, f"Error loading vectors for language '{lang}': {e}"
@st.cache_data(persist=True)
def _perform_analysis(input_text, include_attribution, include_evolution, lang, enable_ai_explanation, cache_version="function-vectors-2025-11-09"):
# This function is cached and performs the main analysis.
results = {}
model, tokenizer, device = None, None, None
if include_attribution or include_evolution:
model, tokenizer, device = load_model_and_tokenizer()
if include_attribution:
function_type_vectors, category_vectors, error = _load_precomputed_vectors(lang)
if error:
results['error'] = error
return results
def get_input_activation(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs, output_hidden_states=True)
last_token_pos = inputs['attention_mask'].sum(dim=1) - 1
last_hidden_state = outputs.hidden_states[-1]
activation = last_hidden_state[0, last_token_pos[0], :].cpu().numpy()
return activation.astype(np.float64)
def calculate_similarity(activation, vectors_dict):
similarities = {}
norm_activation = activation / (np.linalg.norm(activation) + 1e-8)
for label, vector in vectors_dict.items():
norm_vector = vector / (np.linalg.norm(vector) + 1e-8)
similarity = np.dot(norm_activation, norm_vector)
similarities[label] = float(similarity)
return similarities
input_activation = get_input_activation(input_text)
function_type_scores = calculate_similarity(input_activation, function_type_vectors)
category_scores = calculate_similarity(input_activation, category_vectors)
results['attribution'] = {
'function_type_scores': dict(sorted(function_type_scores.items(), key=lambda x: x[1], reverse=True)),
'category_scores': dict(sorted(category_scores.items(), key=lambda x: x[1], reverse=True)),
'function_types_mapping': FUNCTION_TYPES,
'input_text': input_text,
'input_activation': input_activation,
'category_vectors': category_vectors,
'function_type_vectors': function_type_vectors
}
if include_evolution:
try:
analyzer = LayerEvolutionAnalyzer(model, tokenizer, device)
evolution_results = analyzer.analyze_text(input_text)
results['evolution'] = evolution_results
except Exception as e:
results['evolution_error'] = str(e)
if enable_ai_explanation:
with st.spinner(tr('generating_ai_explanation_spinner')):
api_config = init_qwen_api()
if api_config:
if 'attribution' in results:
attribution_results = results['attribution']
sorted_category_scores = list(attribution_results['category_scores'].items())
# Get the top 3 categories.
top_3_cats_data = sorted_category_scores[:3]
top_cats_for_prompt = [format_category_name(cat_key) for cat_key, _ in top_3_cats_data]
top_types_raw = list(attribution_results['function_type_scores'].keys())[:3]
top_types_formatted = [format_category_name(t) for t in top_types_raw]
results['pca_explanation'] = explain_pca_with_llm(api_config, input_text, top_types_formatted, top_cats_for_prompt)
if 'evolution' in results:
results['evolution_explanation'] = explain_evolution_with_llm(api_config, input_text, results['evolution'])
else:
results['api_error'] = "Qwen API key not configured. Skipping AI explanation."
# Clean up to free memory.
if model is not None:
del model
del tokenizer
gc.collect()
if device == 'mps':
torch.mps.empty_cache()
elif device == 'cuda':
torch.cuda.empty_cache()
return results
class LayerEvolutionAnalyzer:
def __init__(self, model, tokenizer, device):
# Initialize the analyzer with a pre-loaded model.
self.model = model
self.tokenizer = tokenizer
self.device = device
# Get the number of layers.
self.num_layers = self.model.config.num_hidden_layers
# Set the model to evaluation mode.
self.model.eval()
def extract_layer_vectors(self, text: str) -> Dict[int, np.ndarray]:
# Extracts function vectors from each layer for a given text.
import numpy as np
import torch
# Tokenize the input text.
inputs = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states
layer_vectors = {}
for i, state in enumerate(hidden_states):
vec = state[0].mean(dim=0).cpu().numpy()
vec = vec.astype(np.float64)
vec = np.nan_to_num(vec, nan=0.0, posinf=1.0, neginf=-1.0)
layer_vectors[i] = vec
return layer_vectors
def compute_layer_similarities(self, layer_vectors: Dict[int, np.ndarray]) -> np.ndarray:
# Computes the cosine similarity between vectors from different layers.
import numpy as np
n_layers = len(layer_vectors)
vectors = np.array([layer_vectors[i] for i in range(n_layers)])
normalized_vectors = vectors / (np.linalg.norm(vectors, axis=1, keepdims=True) + 1e-8)
similarity_matrix = np.dot(normalized_vectors, normalized_vectors.T)
return similarity_matrix
def calculate_layer_changes(self, layer_vectors: Dict[int, np.ndarray]) -> List[float]:
# Calculates the amount of change between consecutive layers.
import numpy as np
changes = []
for i in range(1, len(layer_vectors)):
vec1 = layer_vectors[i-1]
vec2 = layer_vectors[i]
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
if norm1 == 0 or norm2 == 0:
sim = 0
else:
sim = np.dot(vec1, vec2) / (norm1 * norm2)
distance = 1 - sim
changes.append(distance)
return changes
def analyze_text(self, text: str):
# Performs a complete layer evolution analysis on a text.
layer_vectors = self.extract_layer_vectors(text)
similarity_matrix = self.compute_layer_similarities(layer_vectors)
layer_changes = self.calculate_layer_changes(layer_vectors)
return {
'layer_vectors': layer_vectors,
'similarity_matrix': similarity_matrix,
'layer_changes': layer_changes
}
def update_fv_cache(input_text, results):
cache_file = os.path.join("cache", "cached_function_vector_results.json")
os.makedirs("cache", exist_ok=True)
try:
if os.path.exists(cache_file):
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
else:
cached_data = {}
except:
cached_data = {}
# Recursive serializer to handle numpy types
def make_serializable(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, (np.float32, np.float64, np.float16)):
return float(obj)
if isinstance(obj, (np.int32, np.int64, np.int16)):
return int(obj)
if isinstance(obj, (np.bool_, bool)):
return bool(obj)
if isinstance(obj, dict):
return {k: make_serializable(v) for k, v in obj.items()}
if isinstance(obj, list):
return [make_serializable(v) for v in obj]
return obj
serializable_data = {
'attribution': {},
'evolution': make_serializable(results.get('evolution')),
'pca_explanation': results.get('pca_explanation'),
'evolution_explanation': results.get('evolution_explanation'),
'faithfulness': results.get('faithfulness', {})
}
if 'attribution' in results:
attr = results['attribution']
serializable_data['attribution'] = {
'input_activation': make_serializable(attr.get('input_activation')),
'function_type_scores': make_serializable(attr.get('function_type_scores')),
'category_scores': make_serializable(attr.get('category_scores')),
'input_text': attr.get('input_text')
}
cached_data[input_text] = serializable_data
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cached_data, f, ensure_ascii=False, indent=4)
print(f"Saved FV analysis for '{input_text}' to cache.")
def update_fv_cache_with_faithfulness(input_text, key, verification_results):
cache_file = os.path.join("cache", "cached_function_vector_results.json")
if not os.path.exists(cache_file): return
# Recursive serializer to handle numpy types
def make_serializable(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, (np.float32, np.float64, np.float16)):
return float(obj)
if isinstance(obj, (np.int32, np.int64, np.int16)):
return int(obj)
if isinstance(obj, (np.bool_, bool)):
return bool(obj)
if isinstance(obj, dict):
return {k: make_serializable(v) for k, v in obj.items()}
if isinstance(obj, list):
return [make_serializable(v) for v in obj]
return obj
try:
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
if input_text in cached_data:
if "faithfulness" not in cached_data[input_text]:
cached_data[input_text]["faithfulness"] = {}
cached_data[input_text]["faithfulness"][key] = make_serializable(verification_results)
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cached_data, f, ensure_ascii=False, indent=4)
print(f"Saved faithfulness for {key} to cache.")
except Exception as e:
print(f"Failed to update FV cache with faithfulness: {e}")
def run_interactive_analysis(input_text, include_attribution=True, include_evolution=True, enable_ai_explanation=True):
# A wrapper function for running the analysis from the UI.
# Check cache first
cache_file = os.path.join("cache", "cached_function_vector_results.json")
if os.path.exists(cache_file):
try:
with open(cache_file, "r", encoding="utf-8") as f:
cached_data = json.load(f)
if input_text in cached_data:
print(f"Loading FV analysis for '{input_text}' from cache.")
data = cached_data[input_text]
results = {
'evolution': data.get('evolution'),
'pca_explanation': data.get('pca_explanation'),
'evolution_explanation': data.get('evolution_explanation'),
'faithfulness': data.get('faithfulness')
}
if 'attribution' in data:
attr_data = data['attribution']
input_activation = np.array(attr_data['input_activation'])
# Load static vectors
current_lang = st.session_state.get('lang', 'en')
ft_vectors, cat_vectors, error = _load_precomputed_vectors(current_lang)
if not error:
results['attribution'] = {
'input_activation': input_activation,
'function_type_scores': attr_data.get('function_type_scores'),
'category_scores': attr_data.get('category_scores'),
'function_types_mapping': FUNCTION_TYPES,
'input_text': input_text,
'category_vectors': cat_vectors,
'function_type_vectors': ft_vectors
}
st.session_state.user_input_3d_data = results.get('attribution')
# Populate faithfulness in analysis_results if needed
if 'faithfulness' in results and results['faithfulness']:
results['pca_faithfulness'] = results['faithfulness'].get('pca')
results['evolution_faithfulness'] = results['faithfulness'].get('evolution')
return results
except Exception as e:
print(f"Error loading from cache: {e}")
# Before running, check if models exist if not using a cached value.
model_path = "./models/OLMo-2-1124-7B"
model_exists = os.path.exists(model_path)
current_lang = st.session_state.get('lang', 'en')
try:
results = _perform_analysis(input_text, include_attribution, include_evolution, current_lang, enable_ai_explanation)
# Save to cache
update_fv_cache(input_text, results)
except Exception as e:
if not model_exists:
st.info("This live demo is running in a static environment. Only the pre-cached example prompts are available. Please select an example to view its analysis.")
return None
else:
# If model exists but it failed, it's a real error
st.error(f"Analysis failed: {e}")
return None
if 'error' in results and results['error']:
st.error(results['error'])
return None
if 'evolution_error' in results:
st.warning(f"Layer evolution analysis failed: {results['evolution_error']}")
if 'api_error' in results:
st.error(results['api_error'])
if 'attribution' in results:
st.session_state.user_input_3d_data = results['attribution']
return results
def explain_pca_with_llm(api_config, input_text, top_types, top_cats):
# Generates an explanation for the PCA plot with an LLM.
lang = st.session_state.get('lang', 'en')
prompt_key = 'pca_explanation_prompt_de' if lang == 'de' else 'pca_explanation_prompt'
prompt = tr(prompt_key).format(
input_text=input_text,
top_types=", ".join(top_types),
top_cats=", ".join(top_cats)
)
explanation = _explain_with_llm(api_config, prompt)
if "API request failed" in explanation or "Failed to generate explanation" in explanation:
st.error(explanation)
return None
return explanation
def explain_evolution_with_llm(api_config, input_text, evolution_results):
# Generates an explanation for the layer evolution charts with an LLM.
# Extract data for the prompt.
activation_strengths = [float(np.sqrt(np.sum(vec ** 2))) for vec in evolution_results['layer_vectors'].values()]
layer_changes = evolution_results['layer_changes']
peak_activation_layer = np.argmax(activation_strengths)
peak_activation_strength = activation_strengths[peak_activation_layer]
biggest_change_idx = np.argmax(layer_changes)
biggest_change_start_layer = biggest_change_idx + 1
biggest_change_end_layer = biggest_change_idx + 2
biggest_change_magnitude = layer_changes[biggest_change_idx]
lang = st.session_state.get('lang', 'en')
prompt_key = 'evolution_explanation_prompt_de' if lang == 'de' else 'evolution_explanation_prompt'
prompt = tr(prompt_key).format(
input_text=input_text,
peak_activation_layer=peak_activation_layer,
peak_activation_strength=peak_activation_strength,
biggest_change_start_layer=biggest_change_start_layer,
biggest_change_end_layer=biggest_change_end_layer,
biggest_change_magnitude=biggest_change_magnitude
)
explanation = _explain_with_llm(api_config, prompt)
if "API request failed" in explanation or "Failed to generate explanation" in explanation:
st.error(explanation)
return None
return explanation
@st.cache_data(persist=True)
def _explain_with_llm(_api_config, prompt, cache_version="function-vectors-2025-11-09"):
# Makes a cached API call to the LLM.
with st.session_state.api_lock:
headers = {
"Authorization": f"Bearer {_api_config['api_key']}",
"Content-Type": "application/json"
}
payload = {
"model": "qwen2.5-vl-72b-instruct",
"messages": [{"role": "user", "content": prompt}]
}
response = requests.post(
f"{_api_config['api_endpoint']}/chat/completions",
headers=headers,
json=payload,
timeout=300
)
# Raise an exception if the API call fails.
response.raise_for_status()
return response.json().get('choices', [{}])[0].get('message', {}).get('content', '')
# --- Faithfulness Verification for Function Vectors ---
def find_closest_match(query, choices):
# Wrapper for fuzzy matching to find the best choice.
if not query or not choices:
return None
match, score = process.extractOne(query, choices)
if score > 80: # Using a similarity threshold
return match
return None
@st.cache_data(persist=True)
def _cached_extract_fv_claims(api_config, explanation_text, context, cache_version="function-vectors-2025-11-09"):
# Extracts verifiable claims from an AI explanation on the function vectors page.
with st.session_state.api_lock:
headers = {
"Authorization": f"Bearer {api_config['api_key']}",
"Content-Type": "application/json"
}
# The prompt is dynamically adjusted based on the context (PCA or Evolution).
if context == "pca":
claim_types_details = tr("fv_claim_extraction_prompt_pca_types_details")
elif context == "evolution":
claim_types_details = tr("fv_claim_extraction_prompt_evolution_types_details")
else:
return []
# Dynamically set the example based on context.
if context == "pca":
example_block = f"""{tr('fv_claim_extraction_prompt_pca_example_header')}
{tr('fv_claim_extraction_prompt_pca_example_explanation')}
{tr('fv_claim_extraction_prompt_pca_example_json')}
"""
elif context == "evolution":
example_block = f"""{tr('fv_claim_extraction_prompt_evolution_example_header')}
{tr('fv_claim_extraction_prompt_evolution_example_explanation')}
{tr('fv_claim_extraction_prompt_evolution_example_json')}
"""
else:
example_block = ""
claim_extraction_prompt = f"""{tr('fv_claim_extraction_prompt_header')}
{tr('fv_claim_extraction_prompt_instruction')}
{tr('fv_claim_extraction_prompt_context_header').format(context=context)}
{tr('fv_claim_extraction_prompt_types_header')}
{claim_types_details}
{example_block}
{tr('fv_claim_extraction_prompt_analyze_header')}
"{explanation_text}"
{tr('fv_claim_extraction_prompt_footer')}
"""
data = {
"model": "qwen2.5-vl-72b-instruct",
"messages": [{"role": "user", "content": claim_extraction_prompt}],
"max_tokens": 1500,
"temperature": 0.0,
"seed": 42
}
response = requests.post(
f"{api_config['api_endpoint']}/chat/completions",
headers=headers,
json=data,
timeout=300
)
response.raise_for_status()
claims_text = response.json()["choices"][0]["message"]["content"]
try:
if '```json' in claims_text:
claims_text = re.search(r'```json\n(.*?)\n```', claims_text, re.DOTALL).group(1)
return json.loads(claims_text)
except (AttributeError, json.JSONDecodeError):
return []
@st.cache_data(persist=True)
def _cached_verify_semantic_cluster_claim(api_config, claimed_clusters, actual_top_clusters, cache_version="function-vectors-2025-11-09"):
# Uses an LLM to verify if a semantic summary of clusters is faithful to the actual top clusters.
with st.session_state.api_lock:
headers = {
"Authorization": f"Bearer {api_config['api_key']}",
"Content-Type": "application/json"
}
verification_prompt = f"""{tr('fv_semantic_verification_prompt_header')}
{tr('fv_semantic_verification_prompt_rule')}
3. **Contextual Match Override:** If the 'Actual Top-Ranked Functions' contain broadly defined categories (e.g., 'Abstractive Tasks', 'Text Classification', 'Extractive Tasks') and the 'Claimed Functional Neighborhood' describes specific operations, domains (like 'programming', 'math', 'computation'), or logical approaches (like 'positional selection' in a sequence) that can be reasonably interpreted as subsets or related applications of those broad categories, you MUST verify the claim as True.
- Specifically, accept 'computational', 'programming', or 'math' as valid interpretations of 'Abstractive Tasks' or 'Text Generation' when the prompt involves code or logic.
- Accept 'positional selection' or 'item selection' as valid interpretations of 'Extractive Tasks' or 'Abstractive Tasks' (e.g., selecting the next item).
- Do NOT contradict a claim solely because the specific terminology (e.g., 'factorial', 'python') is not present in the top-ranked list, provided the functional relationship is plausible.
{tr('fv_semantic_verification_prompt_actual_header')}
{actual_top_clusters}
{tr('fv_semantic_verification_prompt_claimed_header')}
"{', '.join(claimed_clusters)}"
{tr('fv_semantic_verification_prompt_task_header')}
{tr('fv_semantic_verification_prompt_task_instruction')}
{tr('fv_semantic_verification_prompt_json_instruction')}
{tr('fv_semantic_verification_prompt_footer')}
"""
data = {
"model": "qwen2.5-vl-72b-instruct",
"messages": [{"role": "user", "content": verification_prompt}],
"max_tokens": 400,
"temperature": 0.0,
"seed": 42,
"response_format": {"type": "json_object"}
}
response = requests.post(
f"{api_config['api_endpoint']}/chat/completions",
headers=headers,
json=data,
timeout=300
)
response.raise_for_status()
try:
result_json = response.json()["choices"][0]["message"]["content"]
return json.loads(result_json)
except (json.JSONDecodeError, KeyError):
return {"is_verified": False, "reasoning": "Could not parse the semantic verification result."}
@st.cache_data(persist=True)
def _cached_verify_justification_claim(api_config, input_prompt, category_name, justification, cache_version="function-vectors-2025-11-09"):
# Uses an LLM to verify if a justification for a category's relevance is sound.
with st.session_state.api_lock:
headers = {
"Authorization": f"Bearer {api_config['api_key']}",
"Content-Type": "application/json"
}
verification_prompt = f"""{tr('fv_justification_verification_prompt_header')}
{tr('fv_justification_verification_prompt_rule')}
{tr('fv_justification_verification_prompt_input_header')}
"{input_prompt}"
{tr('fv_justification_verification_prompt_category_header')}
"{category_name}"
{tr('fv_justification_verification_prompt_justification_header')}
"{justification}"
{tr('fv_justification_verification_prompt_task_header')}
{tr('fv_justification_verification_prompt_task_instruction')}
{tr('fv_justification_verification_prompt_json_instruction')}
{tr('fv_justification_verification_prompt_footer')}
"""
data = {
"model": "qwen2.5-vl-72b-instruct",
"messages": [{"role": "user", "content": verification_prompt}],
"max_tokens": 600,
"temperature": 0.0,
"seed": 42,
"response_format": {"type": "json_object"}
}
response = requests.post(
f"{api_config['api_endpoint']}/chat/completions",
headers=headers,
json=data,
timeout=300
)
response.raise_for_status()
try:
result_json = response.json()["choices"][0]["message"]["content"]
return json.loads(result_json)
except (json.JSONDecodeError, KeyError):
return {"is_verified": False, "reasoning": "Could not parse the semantic justification result."}
def verify_fv_claims(claims, analysis_results, context):
# Verifies claims for the function vector page.
verification_results = []
if not analysis_results:
return [{"claim_text": c.get('claim_text', 'N/A'), "verified": False, "evidence": "Analysis results not available."} for c in claims]
for claim in claims:
is_verified = False
evidence = "Could not be verified."
details = claim.get('details', {})
try:
if context == "pca" and 'attribution' in analysis_results:
attribution_data = analysis_results['attribution']
claim_type = claim.get('claim_type')
if claim_type == 'top_k_similarity':
item_type = details.get('item_type')
items_claimed = details.get('items', [])
items_claimed_lower = [str(i).lower() for i in items_claimed]
rank_description = details.get('rank_description')
TOP_K = 3
if item_type == 'function_type':
actual_scores_raw = list(attribution_data['function_type_scores'].keys())
actual_scores_formatted = [tr(i) for i in actual_scores_raw]
actual_scores_lower = [name.lower() for name in actual_scores_formatted]
if rank_description == 'most':
num_claimed = len(items_claimed_lower)
top_n_actual_formatted = actual_scores_formatted[:num_claimed]
top_n_actual_lower = actual_scores_lower[:num_claimed]
is_verified = set(items_claimed_lower) == set(top_n_actual_lower)
evidence = f"The top {num_claimed} function type(s) are: {top_n_actual_formatted}. "
if is_verified:
evidence += "The claim correctly identified them."
else:
evidence += f"The claimed type(s) {items_claimed} did not match the top {num_claimed}."
else:
# Default: check for presence in top K
top_k_actual_formatted = actual_scores_formatted[:TOP_K]
top_k_actual_lower = actual_scores_lower[:TOP_K]
unverified_items = [item for item in items_claimed_lower if item not in top_k_actual_lower]
is_verified = not unverified_items
evidence = f"Top {TOP_K} actual function types are: {top_k_actual_formatted}. "
if not is_verified:
unverified_items_original_case = [c for c in items_claimed if c.lower() in unverified_items]
evidence += f"The following claimed types were not found in the top {TOP_K}: {unverified_items_original_case}."
else:
evidence += f"The claimed types {items_claimed} were successfully found within the top {TOP_K}."
elif item_type == 'category':
actual_scores_raw = list(attribution_data['category_scores'].keys())
actual_scores_formatted = [format_category_name(i) for i in actual_scores_raw]
actual_scores_lower = [name.lower() for name in actual_scores_formatted]
if rank_description == 'most':
num_claimed = len(items_claimed_lower)
top_n_actual_formatted = actual_scores_formatted[:num_claimed]
top_n_actual_lower = actual_scores_lower[:num_claimed]
is_verified = set(items_claimed_lower) == set(top_n_actual_lower)
evidence = f"The top {num_claimed} category/categories are: {top_n_actual_formatted}. "
if is_verified:
evidence += "The claim correctly identified them."
else:
evidence += f"The claimed category/categories {items_claimed} did not match the top {num_claimed}."
else:
# Default: check for presence in top K
top_k_actual_formatted = actual_scores_formatted[:TOP_K]
top_k_actual_lower = actual_scores_lower[:TOP_K]
unverified_items = [item for item in items_claimed_lower if item not in top_k_actual_lower]
is_verified = not unverified_items
evidence = f"Top {TOP_K} actual categories are: {top_k_actual_formatted}. "
if not is_verified:
unverified_items_original_case = [c for c in items_claimed if c.lower() in unverified_items]
evidence += f"The following claimed categories were not found in the top {TOP_K}: {unverified_items_original_case}."
else:
evidence += f"The claimed categories {items_claimed} were successfully found within the top {TOP_K}."
elif claim_type == 'positional_claim':
cluster_names_claimed = details.get('cluster_names', [])
position = details.get('position')
if position == 'near':
top_3_types_raw = list(attribution_data['function_type_scores'].keys())[:3]
top_3_types_formatted = [tr(i) for i in top_3_types_raw]
api_config = init_qwen_api()
if api_config:
verification = _cached_verify_semantic_cluster_claim(api_config, cluster_names_claimed, top_3_types_formatted)
is_verified = verification.get('is_verified', False)
evidence = verification.get('reasoning', "Failed to get reasoning.")
else:
is_verified = False
evidence = "API key not configured for semantic verification."
elif claim_type == 'category_justification_claim':
category_name = details.get('category_name')
justification = details.get('justification')
input_prompt = analysis_results.get('attribution', {}).get('input_text', '')
if not all([category_name, justification, input_prompt]):
evidence = "Missing data for justification verification (category, justification, or input prompt)."
else:
api_config = init_qwen_api()
if api_config:
verification = _cached_verify_justification_claim(api_config, input_prompt, category_name, justification)
is_verified = verification.get('is_verified', False)
evidence = verification.get('reasoning', "Failed to get semantic reasoning for justification.")
else:
is_verified = False
evidence = "API key not configured for semantic verification."
elif context == "evolution" and 'evolution' in analysis_results:
evolution_data = analysis_results['evolution']
claim_type = claim.get('claim_type')
if claim_type == 'peak_activation':
claimed_layer = details.get('layer_index')
activation_strengths = [float(np.sqrt(np.sum(np.array(vec) ** 2))) for vec in evolution_data['layer_vectors'].values()]
actual_peak_layer = np.argmax(activation_strengths)
is_verified = (claimed_layer == actual_peak_layer)
evidence = f"Claimed peak activation at layer {claimed_layer}. Actual peak is at layer {actual_peak_layer}."
elif claim_type == 'biggest_change':
claimed_start = details.get('start_layer')
layer_changes = evolution_data['layer_changes']
actual_biggest_change_idx = np.argmax(layer_changes)
actual_start_layer = actual_biggest_change_idx + 1
is_verified = (claimed_start == actual_start_layer)
evidence = f"Claimed biggest change starts at layer {claimed_start}. Actual biggest change is at layer {actual_start_layer} -> {actual_start_layer + 1}."
elif claim_type == 'specific_value_claim':
metric = details.get('metric')
layer_index = details.get('layer_index')
value = details.get('value')
if metric == 'activation_strength':
activation_strengths = [float(np.sqrt(np.sum(np.array(vec) ** 2))) for vec in evolution_data['layer_vectors'].values()]
# Check if layer_index is valid
if layer_index < len(activation_strengths):
actual_value = activation_strengths[layer_index]
is_verified = round(actual_value, 2) == round(value, 2)
evidence = f"Claimed activation strength for layer {layer_index} was {value}. Actual strength is {actual_value:.2f}."
else:
evidence = f"Invalid layer index {layer_index} provided."
elif metric == 'change_magnitude':
layer_changes = evolution_data['layer_changes']
# change between L and L+1 is at index L-1 in the list
# So for layer_index 1 (1->2), we need list index 0.
change_index = layer_index - 1
if 0 <= change_index < len(layer_changes):
actual_value = layer_changes[change_index]
is_verified = round(actual_value, 2) == round(value, 2)
evidence = f"Claimed change magnitude for transition starting at layer {layer_index} was {value}. Actual magnitude is {actual_value:.2f}."
else:
evidence = f"Invalid starting layer index {layer_index} for change magnitude."
except Exception as e:
evidence = f"An error occurred during verification: {str(e)}"
verification_results.append({
'claim_text': claim.get('claim_text', 'N/A'),
'verified': is_verified,
'evidence': evidence
})
return verification_results
# --- End Faithfulness Verification ---
def display_category_examples():
# Displays an explorer for the function category examples.
st.markdown(tr('category_examples_desc'))
# Add an expander with descriptions for each function type.
with st.expander(tr('what_is_this_function_type')):
for func_type_key in FUNCTION_TYPES.keys():
color = FUNCTION_TYPE_COLORS.get(func_type_key, '#CCCCCC')
st.markdown(f"""
<div style="border-left: 5px solid {color}; padding: 0.5rem 1rem; margin-top: 1rem; background-color: #2b2b2b; border-radius: 5px;">
<h5 style="margin: 0; color: {color};">{tr(func_type_key)}</h5>
<p style="margin-top: 0.5rem; color: #EAEAEA;">{tr(f"desc_{func_type_key}")}</p>
</div>
""", unsafe_allow_html=True)
if 'show_all_states' not in st.session_state:
st.session_state.show_all_states = {}
current_lang = st.session_state.get('lang', 'en')
col1, col2 = st.columns([1, 3])
with col1:
st.subheader(tr('function_types_subheader'))
# --- Restore st.radio and add CSS for highlighting ---
func_type_keys = list(FUNCTION_TYPES.keys())
display_names = [tr(key) for key in func_type_keys]
# Set a default selection.
if 'selected_func_type_key' not in st.session_state:
st.session_state.selected_func_type_key = func_type_keys[0]
# Find the index of the current selection.
try:
current_index = func_type_keys.index(st.session_state.selected_func_type_key)
except ValueError:
current_index = 0
def on_radio_change():
# A callback to update the session state when the radio button changes.
selected_display_name = st.session_state.radio_selector
if selected_display_name in display_names:
idx = display_names.index(selected_display_name)
st.session_state.selected_func_type_key = func_type_keys[idx]
# Create the radio button selector.
st.radio(
label="Function Types",
options=display_names,
index=current_index,
on_change=on_radio_change,
key='radio_selector',
label_visibility="collapsed"
)
# Get the key and color for the selected function type.
selected_func_type_key = st.session_state.selected_func_type_key
selected_color = FUNCTION_TYPE_COLORS.get(selected_func_type_key, 'lightgrey')
# Add some CSS to highlight the selected radio button.
st.markdown(f"""
<style>
[data-testid="stAppViewBlockContainer"] div[role="radiogroup"] > label:has(input[type="radio"]:checked) {{
background-color: {selected_color} !important;
border-radius: 10px;
padding: 0.5rem 1rem;
color: white !important;
font-weight: bold;
}}
/* Ensure the text itself is white for contrast */
[data-testid="stAppViewBlockContainer"] div[role="radiogroup"] > label:has(input[type="radio"]:checked) div {{
color: white !important;
}}
</style>
""", unsafe_allow_html=True)
with col2:
category_keys = FUNCTION_TYPES[selected_func_type_key]
available_cats = [
cat_key for cat_key in category_keys
if cat_key in FUNCTION_CATEGORIES and current_lang in FUNCTION_CATEGORIES[cat_key]
]
if not available_cats:
st.warning(tr('no_examples_for_type'))
else:
# Get the color and symbol for the selected type.
selected_display_name = tr(selected_func_type_key)
# Display the header.
st.markdown(f"<h4 style='color: #3498db; font-weight: bold;'>{tr('prompt_examples_for_category_header').format(category=selected_display_name)}</h4>", unsafe_allow_html=True)
num_to_show_by_default = 9
show_all = st.session_state.show_all_states.get(selected_func_type_key, False)
if len(available_cats) > num_to_show_by_default and not show_all:
cats_to_display = available_cats[:num_to_show_by_default]
else:
cats_to_display = available_cats
# --- Display Cards ---
num_columns = 3
example_cols = st.columns(num_columns)
for i, cat_key in enumerate(cats_to_display):
examples = FUNCTION_CATEGORIES.get(cat_key, {}).get(current_lang, [])
if examples:
# Use the formatter for the display name.
display_name = format_category_name(cat_key)
with example_cols[i % num_columns]:
with st.container():
st.markdown(f"""
<div style="border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; height: 140px; margin-bottom: 1rem; display: flex; flex-direction: column; justify-content: space-between;">
<div>
<p style="font-weight: bold; color: #3498db;">{display_name}</p>
</div>
<div>
<p style="font-style: italic; font-size: 0.9em; color: #6c757d;">"{examples[0]}"</p>
</div>
</div>
""", unsafe_allow_html=True)
# --- "Show More/Less" Buttons ---
if len(available_cats) > num_to_show_by_default:
if not show_all:
if st.button(tr('show_all_button').format(count=len(available_cats)), key=f"show_all_{selected_func_type_key}"):
st.session_state.show_all_states[selected_func_type_key] = True
st.rerun()
else:
if st.button(tr('show_less_button'), key=f"show_less_{selected_func_type_key}"):
# Set to False or remove the key.
st.session_state.show_all_states[selected_func_type_key] = False
st.rerun()
def display_3d_pca_visualization(user_input_data=None, show_description=True):
# Displays the interactive 3D PCA plot.
import numpy as np
current_lang = st.session_state.get('lang', 'en')
if show_description:
if current_lang == 'de':
st.markdown("""
<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.5rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #4a90e2;'>
<h4 style='color: #4a90e2; margin-top: 0;'>Interaktive 3D-PCA von Funktionsvektoren</h4>
<p>Diese Visualisierung stellt die hochdimensionalen 'Funktionsvektoren' verschiedener Anweisungs-Prompts in einem vereinfachten 3D-Raum mittels Hauptkomponentenanalyse (PCA) dar. Hier ist eine AufschlΓΌsselung dessen, was Sie sehen:</p>
<ul>
<li><strong>Was sind Funktionsvektoren?</strong> Jeder Punkt in diesem Diagramm reprΓ€sentiert einen 'Funktionsvektor' β einen numerischen Fingerabdruck (ein Embedding), der den zentralen funktionalen Zweck eines bestimmten Prompts erfasst. Diese Vektoren werden aus dem letzten verborgenen Zustand des OLMo-Modells extrahiert, nachdem es einen Prompt verarbeitet hat. Prompts mit Γ€hnlichen Funktionen haben Vektoren, die im hochdimensionalen Raum nahe beieinander liegen.</li>
<li><strong>Wie funktioniert PCA?</strong> PCA ist eine Technik zur Dimensionsreduktion, die komplexe, hochdimensionale Daten in ein neues, kleineres Koordinatensystem (in diesem Fall 3D) umwandelt. Dies geschieht durch die Identifizierung der Richtungen (Hauptkomponenten), in denen die Daten am stΓ€rksten variieren. Durch die Darstellung der ersten drei Hauptkomponenten kΓΆnnen wir die wichtigsten Beziehungen zwischen den Funktionsvektoren auf eine fΓΌr uns leicht interpretierbare Weise visualisieren.</li>
<li><strong>Worauf ist zu achten?</strong> Suchen Sie nach Punktclustern. Diese Cluster reprΓ€sentieren Gruppen von Funktionen, die das Modell als Γ€hnlich wahrnimmt. Der Abstand zwischen den Punkten gibt ihre funktionale Γhnlichkeit an β nΓ€here Punkte sind Γ€hnlicher.</li>
</ul>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.5rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #4a90e2;'>
<h4 style='color: #4a90e2; margin-top: 0;'>Interactive 3D PCA of Function Vectors</h4>
<p>This visualization plots the high-dimensional 'function vectors' of different instructional prompts in a simplified 3D space using <strong>Principal Component Analysis (PCA)</strong>. Here's a breakdown of what you're seeing:</p>
<ul>
<li><strong>What are Function Vectors?</strong> Each point on this plot represents a 'function vector'βa numerical fingerprint (an embedding) that captures the core functional purpose of a specific prompt. These vectors are extracted from the final hidden state of the OLMo model after it processes a prompt. Prompts with similar functions will have vectors that are close to each other in the high-dimensional space.</li>
<li><strong>How does PCA work?</strong> PCA is a dimensionality reduction technique that transforms the complex, high-dimensional data into a new, smaller coordinate system (in this case, 3D). It does this by identifying the directions (principal components) where the data varies the most. By plotting the first three principal components, we can visualize the most significant relationships between the function vectors in a way that's easy for us to interpret.</li>
<li><strong>What to look for:</strong> Look for clusters of points. These clusters represent groups of functions that the model perceives as similar. The distance between points indicates their functional similarityβcloser points are more alike.</li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown(tr('run_analysis_for_viz_info'), unsafe_allow_html=True)
# --- Load the base vectors for the selected language ---
@st.cache_data
def load_base_vectors(lang, cache_version="function-vectors-2025-11-09"):
import numpy as np
vector_path = Path(__file__).parent / f"data/vectors/{lang}_category_vectors.npz"
if not vector_path.exists():
st.error(f"Could not find vector file for language '{lang}' at {vector_path}")
return None
try:
loaded_data = np.load(vector_path, allow_pickle=True)
return {key: loaded_data[key] for key in loaded_data.files}
except Exception as e:
st.error(f"Error loading vectors: {e}")
return None
category_vectors = load_base_vectors(current_lang)
if category_vectors is None:
return # Stop if we can't load the necessary data
try:
# Prepare data for PCA using the loaded base vectors
categories = list(category_vectors.keys())
vectors = np.vstack([category_vectors[cat] for cat in categories])
# If user input exists, add it to the data
if user_input_data is not None:
input_activation = user_input_data['input_activation']
input_text = user_input_data['input_text']
all_vectors = np.vstack([vectors, input_activation.reshape(1, -1)])
plot_title = tr('pca_3d_with_input_title')
else:
all_vectors = vectors
plot_title = tr('pca_3d_title').format(lang=current_lang.upper())
# Perform PCA
pca = PCA(n_components=3)
reduced_vectors = pca.fit_transform(all_vectors)
# Create plotly figure
fig = go.Figure()
# Add category points grouped by function type
category_points = reduced_vectors[:len(categories)]
for func_type_key, cats in FUNCTION_TYPES.items():
func_categories = [cat for cat in cats if cat in categories]
if func_categories:
indices = [categories.index(cat) for cat in func_categories]
fig.add_trace(go.Scatter3d(
x=category_points[indices, 0], y=category_points[indices, 1], z=category_points[indices, 2],
mode='markers',
marker=dict(size=8, color=FUNCTION_TYPE_COLORS.get(func_type_key, 'gray'), symbol=PLOTLY_SYMBOLS.get(func_type_key, 'circle'), line=dict(width=1, color='black'), opacity=0.7),
name=tr(func_type_key),
text=[format_category_name(cat) for cat in func_categories],
hovertemplate="<b>%{text}</b><br>PC1: %{x:.3f}<br>PC2: %{y:.3f}<br>PC3: %{z:.3f}<extra></extra>"
))
# If user input exists, add it as a special point
if user_input_data is not None:
user_point = reduced_vectors[-1]
fig.add_trace(go.Scatter3d(
x=[user_point[0]], y=[user_point[1]], z=[user_point[2]],
mode='markers',
marker=dict(size=12, color='red', symbol='diamond', line=dict(width=2, color='darkred')),
name=tr('your_input_legend'),
text=[f"{tr('your_input_legend')}: {input_text[:50]}..."],
hovertemplate=f"<b>{tr('your_input_hover_title')}</b><br>%{{text}}<br>PC1: %{{x:.3f}}<br>PC2: %{{y:.3f}}<br>PC3: %{{z:.3f}}<extra></extra>"
))
fig.update_layout(
title=plot_title,
width=1400, height=900,
scene=dict(xaxis_title='PC1', yaxis_title='PC2', zaxis_title='PC3', camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))),
legend=dict(orientation="v", yanchor="top", y=1, xanchor="left", x=1.02, font=dict(size=10), title_text=tr('legend_title'))
)
st.plotly_chart(fig, use_container_width=True)
if user_input_data is not None:
st.markdown(tr('your_input_analysis_desc').format(input_text=input_text))
else:
st.markdown(f"""{tr('pca_key_insights')}""", unsafe_allow_html=True)
except Exception as e:
st.error(tr('error_creating_enhanced_pca').format(e=str(e)))
def display_analysis_results(results, input_text):
# Displays the results of the analysis.
st.success(tr('analysis_complete_success'))
st.markdown(f"""
<div style='background: linear-gradient(135deg, #2f3f70 0%, #3a4c86 100%); padding: 1rem; border-radius: 10px; color: #f5f7fb; margin: 1rem 0; border-left: 4px solid #dcae36;'>
<h4 style='margin: 0; color: #f5f7fb;'>{tr('analyzed_text_header')}</h4>
<p style='margin: 0.5rem 0 0 0; font-size: 1.1rem; font-style: italic; color: #e8ecf8;'>"{input_text}"</p>
</div>
""", unsafe_allow_html=True)
# --- Show the 3D plot with the user's data first ---
st.markdown(f"<h2>{tr('pca_3d_section_header')}</h2>", unsafe_allow_html=True)
user_input_data = st.session_state.get('user_input_3d_data')
display_3d_pca_visualization(user_input_data, show_description=False)
# --- AI Explanation for PCA Plot ---
if st.session_state.get('enable_ai_explanation') and 'explanation_part_1' in st.session_state:
# Display the first part of the explanation.
if st.session_state.explanation_part_1:
explanation_html = markdown.markdown(st.session_state.explanation_part_1)
st.markdown(
f"<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #6EE7B7; font-size: 0.9rem;'>{explanation_html}</div>",
unsafe_allow_html=True
)
# Faithfulness Check for PCA plot
with st.expander(tr('faithfulness_check_expander')):
st.markdown(tr('fv_faithfulness_explanation_pca_html'), unsafe_allow_html=True)
# Check for pre-cached faithfulness results first
if 'pca_faithfulness' in st.session_state.analysis_results:
verification_results = st.session_state.analysis_results['pca_faithfulness']
else:
api_config = init_qwen_api()
if api_config:
with st.spinner(tr('running_faithfulness_check_spinner')):
claims = _cached_extract_fv_claims(api_config, st.session_state.explanation_part_1, "pca")
verification_results = verify_fv_claims(claims, results, "pca")
# Update cache
if 'attribution' in results and 'input_text' in results['attribution']:
update_fv_cache_with_faithfulness(results['attribution']['input_text'], "pca", verification_results)
else:
verification_results = []
st.warning(tr('api_key_not_configured_warning'))
if verification_results:
for result in verification_results:
status_text = tr('verified_status') if result['verified'] else tr('contradicted_status')
st.markdown(f"""
<div style="margin-bottom: 1rem; padding: 0.8rem; border-radius: 8px; border-left: 5px solid {'#28a745' if result['verified'] else '#dc3545'}; background-color: #1a1a1a;">
<p style="margin-bottom: 0.3rem;"><strong>{tr('claim_label')}:</strong> <em>"{result['claim_text']}"</em></p>
<p style="margin-bottom: 0.3rem;"><strong>{tr('status_label')}:</strong> {status_text}</p>
<p style="margin-bottom: 0;"><strong>{tr('evidence_label')}:</strong> {result['evidence']}</p>
</div>
""", unsafe_allow_html=True)
else:
st.info(tr('no_verifiable_claims_info'))
st.markdown("---")
# --- Function Type and Category Analysis ---
if 'attribution' in results:
attribution = results['attribution']
# --- Section 1: Function Type Attribution ---
st.markdown(f"<h2>{tr('function_types_tab')}</h2>", unsafe_allow_html=True)
st.markdown(tr('function_type_attribution_header'))
function_type_scores = attribution['function_type_scores']
top_types = list(function_type_scores.items())[:6]
# Reverse for a horizontal bar chart.
top_types.reverse()
fig = go.Figure()
colors = [FUNCTION_TYPE_COLORS.get(name, '#CCCCCC') for name, _ in top_types]
fig.add_trace(go.Bar(
x=[score for _, score in top_types],
y=[tr(name) for name, _ in top_types],
orientation='h',
marker=dict(color=colors),
text=[f"{score:.3f}" for _, score in top_types],
textposition='outside',
hovertemplate='<b>%{y}</b><br>Score: %{x:.3f}<extra></extra>'
))
fig.update_layout(
xaxis_title=tr('attribution_score_xaxis'),
yaxis=dict(autorange="reversed"), # Ensures y-axis is not reversed
height=500,
margin=dict(l=200, r=100, t=50, b=50)
)
st.plotly_chart(fig, use_container_width=True)
# --- AI Explanation for Function Type Plot ---
if st.session_state.get('enable_ai_explanation') and 'explanation_part_2' in st.session_state:
if st.session_state.explanation_part_2:
explanation_html = markdown.markdown(st.session_state.explanation_part_2)
st.markdown(
f"<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #A78BFA; font-size: 0.9rem;'>{explanation_html}</div>",
unsafe_allow_html=True
)
# Faithfulness Check for Function Type plot
with st.expander(tr('faithfulness_check_expander')):
st.markdown(tr('fv_faithfulness_explanation_pca_html'), unsafe_allow_html=True)
if 'pca_faithfulness' in st.session_state.analysis_results:
verification_results = st.session_state.analysis_results['pca_faithfulness']
else:
api_config = init_qwen_api()
if api_config:
with st.spinner(tr('running_faithfulness_check_spinner')):
claims = _cached_extract_fv_claims(api_config, st.session_state.explanation_part_2, "pca")
verification_results = verify_fv_claims(claims, results, "pca")
# Update cache
if 'attribution' in results and 'input_text' in results['attribution']:
update_fv_cache_with_faithfulness(results['attribution']['input_text'], "pca", verification_results)
else:
verification_results = []
st.warning(tr('api_key_not_configured_warning'))
if verification_results:
for result in verification_results:
status_text = tr('verified_status') if result['verified'] else tr('contradicted_status')
st.markdown(f"""
<div style="margin-bottom: 1rem; padding: 0.8rem; border-radius: 8px; border-left: 5px solid {'#28a745' if result['verified'] else '#dc3545'}; background-color: #1a1a1a;">
<p style="margin-bottom: 0.3rem;"><strong>{tr('claim_label')}:</strong> <em>"{result['claim_text']}"</em></p>
<p style="margin-bottom: 0.3rem;"><strong>{tr('status_label')}:</strong> {status_text}</p>
<p style="margin-bottom: 0;"><strong>{tr('evidence_label')}:</strong> {result['evidence']}</p>
</div>
""", unsafe_allow_html=True)
else:
st.info(tr('no_verifiable_claims_info'))
st.markdown("---")
# --- Section 2: Category Analysis ---
st.markdown(f"<h2>{tr('category_analysis_tab')}</h2>", unsafe_allow_html=True)
st.markdown(tr('top_category_attribution_header'))
category_scores = attribution['category_scores']
top_categories = list(category_scores.items())[:20]
if top_categories:
# Get the function type for each category to color the chart.
function_type_mapping = attribution.get('function_types_mapping', FUNCTION_TYPES)
category_to_func_type = {
cat: func_type
for func_type, cats in function_type_mapping.items()
for cat in cats
}
missing_categories = [cat for cat, _ in top_categories if cat not in category_to_func_type]
if missing_categories:
st.warning(tr('missing_category_mapping_warning').format(categories=", ".join(missing_categories)))
filtered_categories = [(cat, score) for cat, score in top_categories if cat in category_to_func_type]
if not filtered_categories:
st.info(tr('no_mapped_categories_info'))
else:
# Restructure the data for the sunburst chart.
leaf_labels = [format_category_name(cat_key) for cat_key, score in filtered_categories]
leaf_values = [score for _, score in filtered_categories]
leaf_parent_keys = [category_to_func_type[cat_key] for cat_key, _ in filtered_categories]
function_type_order = {key: idx for idx, key in enumerate(function_type_mapping.keys())}
parent_keys = sorted(
set(leaf_parent_keys),
key=lambda key: function_type_order.get(key, len(function_type_order))
)
parent_labels_map = {key: tr(key) for key in parent_keys}
parent_values = [
sum(leaf_values[i] for i, parent_key in enumerate(leaf_parent_keys) if parent_key == key)
for key in parent_keys
]
sunburst_labels = [parent_labels_map[key] for key in parent_keys] + leaf_labels
sunburst_parents = [""] * len(parent_keys) + [parent_labels_map[key] for key in leaf_parent_keys]
sunburst_values = parent_values + leaf_values
# Create a color map for the labels.
label_to_color_map = {
parent_labels_map[key]: FUNCTION_TYPE_COLORS.get(key, '#CCCCCC')
for key in parent_keys
}
# --- Generate gradient colors for leaves based on score ---
def hex_to_rgb_float(h):
h = h.lstrip('#')
return [int(h[i:i+2], 16) / 255.0 for i in (0, 2, 4)]
def rgb_float_to_hex(rgb):
return '#%02x%02x%02x' % tuple(int(c * 255) for c in rgb)
leaf_scores = leaf_values
min_score = min(leaf_scores) if leaf_scores else 0
max_score = max(leaf_scores) if leaf_scores else 1
score_range = max_score - min_score
sunburst_marker_colors = []
# Add solid colors for the parent categories.
for key in parent_keys:
parent_label = parent_labels_map[key]
sunburst_marker_colors.append(label_to_color_map[parent_label])
# Add gradient colors for the leaf categories.
for i, parent_key in enumerate(leaf_parent_keys):
base_color_hex = FUNCTION_TYPE_COLORS.get(parent_key, '#CCCCCC')
# Normalize the score for this leaf.
normalized_score = (leaf_scores[i] - min_score) / score_range if score_range > 0 else 0.5
# Convert to HLS to get the original lightness.
r, g, b = hex_to_rgb_float(base_color_hex)
h, base_l, s = colorsys.rgb_to_hls(r, g, b)
# Define a lightness range.
lightest_shade = 0.9
lightness_range = lightest_shade - base_l
# Interpolate the lightness.
new_l = lightest_shade - (normalized_score * lightness_range)
# Convert back to RGB and then to Hex.
new_r, new_g, new_b = colorsys.hls_to_rgb(h, new_l, s)
new_hex = rgb_float_to_hex((new_r, new_g, new_b))
sunburst_marker_colors.append(new_hex)
# --- Highlight the top match with a stronger visual cue ---
top_category_name, _ = filtered_categories[0]
formatted_top_category_name = format_category_name(top_category_name)
top_parent_key = category_to_func_type.get(top_category_name)
top_category_parent_str = parent_labels_map.get(top_parent_key, tr('unmapped_function_type'))
sunburst_line_widths = [1] * len(sunburst_labels)
sunburst_line_colors = ['#333'] * len(sunburst_labels)
try:
top_leaf_index = sunburst_labels.index(formatted_top_category_name)
sunburst_line_widths[top_leaf_index] = 5
sunburst_line_colors[top_leaf_index] = '#FFFFFF'
except ValueError:
pass
try:
top_parent_index = sunburst_labels.index(top_category_parent_str)
sunburst_line_widths[top_parent_index] = 5
sunburst_line_colors[top_parent_index] = '#FFFFFF'
except ValueError:
pass
fig = go.Figure(go.Sunburst(
labels=sunburst_labels,
parents=sunburst_parents,
values=sunburst_values,
branchvalues="total",
hovertemplate='<b>%{label}</b><br>Score: %{value:.3f}<extra></extra>',
marker=dict(
colors=sunburst_marker_colors,
line=dict(color=sunburst_line_colors, width=sunburst_line_widths)
),
maxdepth=2,
textfont=dict(color='black'),
leaf=dict(opacity=1)
))
fig.update_layout(
title=dict(
text=tr('sunburst_chart_title'),
font=dict(size=18, family="Arial", color="#EAEAEA"),
x=0.5
),
height=600,
font=dict(family='Arial', size=12)
)
st.plotly_chart(fig, use_container_width=True)
# --- AI Explanation for Category Plot ---
if st.session_state.get('enable_ai_explanation') and 'explanation_part_3' in st.session_state:
if st.session_state.explanation_part_3:
explanation_html = markdown.markdown(st.session_state.explanation_part_3)
st.markdown(
f"<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #FBBF24; font-size: 0.9rem;'>{explanation_html}</div>",
unsafe_allow_html=True
)
# Faithfulness Check for Category Plot
with st.expander(tr('faithfulness_check_expander')):
st.markdown(tr('fv_faithfulness_explanation_pca_html'), unsafe_allow_html=True)
if 'pca_faithfulness' in st.session_state.analysis_results:
verification_results = st.session_state.analysis_results['pca_faithfulness']
else:
api_config = init_qwen_api()
if api_config:
with st.spinner(tr('running_faithfulness_check_spinner')):
claims = _cached_extract_fv_claims(api_config, st.session_state.explanation_part_3, "pca")
verification_results = verify_fv_claims(claims, results, "pca")
# Update cache
if 'attribution' in results and 'input_text' in results['attribution']:
update_fv_cache_with_faithfulness(results['attribution']['input_text'], "pca", verification_results)
else:
verification_results = []
st.warning(tr('api_key_not_configured_warning'))
if verification_results:
for result in verification_results:
status_text = tr('verified_status') if result['verified'] else tr('contradicted_status')
st.markdown(f"""
<div style="margin-bottom: 1rem; padding: 0.8rem; border-radius: 8px; border-left: 5px solid {'#28a745' if result['verified'] else '#dc3545'}; background-color: #1a1a1a;">
<p style="margin-bottom: 0.3rem;"><strong>{tr('claim_label')}:</strong> <em>"{result['claim_text']}"</em></p>
<p style="margin-bottom: 0.3rem;"><strong>{tr('status_label')}:</strong> {status_text}</p>
<p style="margin-bottom: 0;"><strong>{tr('evidence_label')}:</strong> {result['evidence']}</p>
</div>
""", unsafe_allow_html=True)
else:
st.info(tr('no_verifiable_claims_info'))
else:
st.warning("No category attribution data available to display.")
st.markdown("---")
# --- Section 3: Layer Evolution ---
st.markdown(f"<h2>{tr('layer_evolution_tab')}</h2>", unsafe_allow_html=True)
st.markdown(tr('layer_evolution_header'))
if 'evolution' in results and results['evolution']:
display_evolution_results(results['evolution'])
else:
st.info(tr('evolution_not_available_info'))
def display_evolution_results(evolution_results):
# Displays the layer evolution analysis results.
import plotly.graph_objects as go
import numpy as np
# Extract key metrics from the results.
layer_vectors = evolution_results['layer_vectors']
similarity_matrix = evolution_results['similarity_matrix']
layer_changes = evolution_results['layer_changes']
# Calculate activation strengths.
activation_strengths = [float(np.sqrt(np.sum(np.array(vec) ** 2))) for vec in layer_vectors.values()]
# Display the key insights.
col1, col2, col3 = st.columns(3)
with col1:
max_change_layer = np.argmax(layer_changes) + 1
st.metric(
"Biggest Change",
f"Layer {max_change_layer}β{max_change_layer+1}",
f"{layer_changes[max_change_layer-1]:.3f}",
help="Layer transition with the largest representational change"
)
with col2:
max_activation_layer = np.argmax(activation_strengths)
st.metric(
"Peak Activation",
f"Layer {max_activation_layer}",
f"{activation_strengths[max_activation_layer]:.3f}",
help="Layer with strongest overall activation"
)
with col3:
avg_change = np.mean(layer_changes)
st.metric(
"Avg Change",
f"{avg_change:.3f}",
help="Average change magnitude across all layer transitions"
)
# Plot the activation strength.
st.markdown("<h3><i class='bi bi-lightning-charge-fill'></i> Activation Strength Across Layers</h3>", unsafe_allow_html=True)
# Create the line plot.
peak_idx = np.argmax(activation_strengths)
fig = go.Figure()
# Add the main line with gradient colors.
fig.add_trace(go.Scatter(
x=list(range(len(activation_strengths))),
y=activation_strengths,
mode='lines+markers',
line=dict(color='#4ECDC4', width=4),
marker=dict(size=10, color='#45B7D1', line=dict(color='white', width=2)),
name='Activation Strength',
hovertemplate='<b>Layer %{x}</b><br>Strength: %{y:.3f}<extra></extra>'
))
# Highlight the peak activation.
fig.add_vline(
x=peak_idx,
line_dash="dash",
line_color="#FF6B6B",
line_width=3,
annotation_text=f"Peak at Layer {peak_idx}",
annotation_position="top"
)
# Add a marker for the peak.
fig.add_trace(go.Scatter(
x=[peak_idx],
y=[activation_strengths[peak_idx]],
mode='markers',
marker=dict(size=15, color='#FF6B6B', symbol='star', line=dict(color='white', width=2)),
name=f'Peak Layer {peak_idx}',
hovertemplate=f'<b>Peak Layer {peak_idx}</b><br>Strength: {activation_strengths[peak_idx]:.3f}<extra></extra>'
))
fig.update_layout(
xaxis=dict(
title=dict(text="Layer Index", font=dict(size=16, color='#EAEAEA'), standoff=50),
tickfont=dict(size=14, color='#EAEAEA'),
gridcolor='rgba(200,200,200,0.3)',
showgrid=True,
zeroline=False
),
yaxis=dict(
title=dict(text="Activation Strength (L2 norm)", font=dict(size=16, color='#EAEAEA')),
tickfont=dict(size=14, color='#EAEAEA'),
gridcolor='rgba(200,200,200,0.3)',
showgrid=True,
zeroline=False
),
height=500,
margin=dict(l=80, r=80, t=100, b=80),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=12, color='#EAEAEA')
),
font=dict(family='Arial'),
hovermode='x'
)
st.plotly_chart(fig, use_container_width=True)
# --- AI Explanation for Activation Strength ---
if st.session_state.get('enable_ai_explanation') and 'evolution_explanation_part_1' in st.session_state:
if st.session_state.evolution_explanation_part_1:
explanation_html = markdown.markdown(st.session_state.evolution_explanation_part_1)
st.markdown(
f"<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #A78BFA; font-size: 0.9rem;'>{explanation_html}</div>",
unsafe_allow_html=True
)
# Faithfulness Check for Activation Strength plot
with st.expander(tr('faithfulness_check_expander')):
st.markdown(tr('fv_faithfulness_explanation_evolution_html'), unsafe_allow_html=True)
if 'evolution_faithfulness' in st.session_state.analysis_results:
verification_results = st.session_state.analysis_results['evolution_faithfulness']
else:
api_config = init_qwen_api()
if api_config:
with st.spinner(tr('running_faithfulness_check_spinner')):
claims = _cached_extract_fv_claims(api_config, st.session_state.evolution_explanation_part_1, "evolution")
verification_results = verify_fv_claims(claims, st.session_state.analysis_results, "evolution")
# Update cache
if 'attribution' in st.session_state.analysis_results and 'input_text' in st.session_state.analysis_results['attribution']:
update_fv_cache_with_faithfulness(st.session_state.analysis_results['attribution']['input_text'], "evolution", verification_results)
else:
verification_results = []
st.warning(tr('api_key_not_configured_warning'))
if verification_results:
for result in verification_results:
status_text = tr('verified_status') if result['verified'] else tr('contradicted_status')
st.markdown(f"""
<div style="margin-bottom: 1rem; padding: 0.8rem; border-radius: 8px; border-left: 5px solid {'#28a745' if result['verified'] else '#dc3545'}; background-color: #1a1a1a;">
<p style="margin-bottom: 0.3rem;"><strong>{tr('claim_label')}:</strong> <em>"{result['claim_text']}"</em></p>
<p style="margin-bottom: 0.3rem;"><strong>{tr('status_label')}:</strong> {status_text}</p>
<p style="margin-bottom: 0;"><strong>{tr('evidence_label')}:</strong> {result['evidence']}</p>
</div>
""", unsafe_allow_html=True)
else:
st.info(tr('no_verifiable_claims_info'))
# Plot the layer changes.
st.markdown("<h3><i class='bi bi-arrow-repeat'></i> Layer-to-Layer Changes</h3>", unsafe_allow_html=True)
max_change_idx = np.argmax(layer_changes)
fig2 = go.Figure()
# Add the main line with gradient colors.
fig2.add_trace(go.Scatter(
x=list(range(1, len(layer_changes) + 1)),
y=layer_changes,
mode='lines+markers',
line=dict(color='#FECA57', width=4),
marker=dict(size=10, color='#FF9FF3', line=dict(color='white', width=2)),
name='Layer Changes',
hovertemplate='<b>Layer %{x}β%{customdata}</b><br>Change: %{y:.3f}<extra></extra>',
customdata=[i+2 for i in range(len(layer_changes))]
))
# Highlight the biggest change.
fig2.add_vline(
x=max_change_idx + 1,
line_dash="dash",
line_color="#FF6B6B",
line_width=3,
annotation_text=f"Biggest Change: {max_change_idx+1}β{max_change_idx+2}",
annotation_position="top"
)
# Add a marker for the peak.
fig2.add_trace(go.Scatter(
x=[max_change_idx + 1],
y=[layer_changes[max_change_idx]],
mode='markers',
marker=dict(size=15, color='#FF6B6B', symbol='diamond', line=dict(color='white', width=2)),
name=f'Max Change: L{max_change_idx+1}βL{max_change_idx+2}',
hovertemplate=f'<b>Max Change: Layer {max_change_idx+1}β{max_change_idx+2}</b><br>Change: {layer_changes[max_change_idx]:.3f}<extra></extra>'
))
fig2.update_layout(
xaxis=dict(
title=dict(text="Layer Transition", font=dict(size=16, color='#EAEAEA'), standoff=50),
tickfont=dict(size=14, color='#EAEAEA'),
gridcolor='rgba(200,200,200,0.3)',
showgrid=True,
zeroline=False
),
yaxis=dict(
title=dict(text="Change Magnitude (Cosine Distance)", font=dict(size=16, color='#EAEAEA')),
tickfont=dict(size=14, color='#EAEAEA'),
gridcolor='rgba(200,200,200,0.3)',
showgrid=True,
zeroline=False
),
height=500,
margin=dict(l=80, r=80, t=100, b=80),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=12, color='#EAEAEA')
),
font=dict(family='Arial'),
hovermode='x'
)
st.plotly_chart(fig2, use_container_width=True)
# --- AI Explanation for Layer Changes ---
if st.session_state.get('enable_ai_explanation') and 'evolution_explanation_part_2' in st.session_state:
if st.session_state.evolution_explanation_part_2:
explanation_html = markdown.markdown(st.session_state.evolution_explanation_part_2)
st.markdown(
f"<div style='background-color: #2b2b2b; color: #ffffff; padding: 1.2rem; border-radius: 10px; margin: 1rem 0; border-left: 5px solid #6EE7B7; font-size: 0.9rem;'>{explanation_html}</div>",
unsafe_allow_html=True
)
# Faithfulness Check for Layer Changes plot
with st.expander(tr('faithfulness_check_expander')):
st.markdown(tr('fv_faithfulness_explanation_evolution_html'), unsafe_allow_html=True)
if 'evolution_faithfulness' in st.session_state.analysis_results:
verification_results = st.session_state.analysis_results['evolution_faithfulness']
else:
api_config = init_qwen_api()
if api_config:
with st.spinner(tr('running_faithfulness_check_spinner')):
claims = _cached_extract_fv_claims(api_config, st.session_state.evolution_explanation_part_2, "evolution")
verification_results = verify_fv_claims(claims, st.session_state.analysis_results, "evolution")
# Update cache
if 'attribution' in st.session_state.analysis_results and 'input_text' in st.session_state.analysis_results['attribution']:
update_fv_cache_with_faithfulness(st.session_state.analysis_results['attribution']['input_text'], "evolution", verification_results)
else:
verification_results = []
st.warning(tr('api_key_not_configured_warning'))
if verification_results:
for result in verification_results:
status_text = tr('verified_status') if result['verified'] else tr('contradicted_status')
st.markdown(f"""
<div style="margin-bottom: 1rem; padding: 0.8rem; border-radius: 8px; border-left: 5px solid {'#28a745' if result['verified'] else '#dc3545'}; background-color: #1a1a1a;">
<p style="margin-bottom: 0.3rem;"><strong>{tr('claim_label')}:</strong> <em>"{result['claim_text']}"</em></p>
<p style="margin-bottom: 0.3rem;"><strong>{tr('status_label')}:</strong> {status_text}</p>
<p style="margin-bottom: 0;"><strong>{tr('evidence_label')}:</strong> {result['evidence']}</p>
</div>
""", unsafe_allow_html=True)
else:
st.info(tr('no_verifiable_claims_info'))
if __name__ == "__main__":
from utilities.localization import initialize_localization, tr
initialize_localization()
show_function_vectors_page() |