Spaces:
Sleeping
Sleeping
File size: 14,738 Bytes
5b6c556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# This script trains the Cross-Layer Transcoder (CLT) and plots its training loss.
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import json
import logging
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import Dict, List, Tuple
from dataclasses import dataclass
from tqdm import tqdm
import os
import random
import argparse
import glob
import itertools
from torch.optim.lr_scheduler import CosineAnnealingLR
# --- Fix import path ---
import sys
sys.path.append(str(Path(__file__).resolve().parent.parent))
from utilities.utils import set_seed
# --- Constants ---
PROJECT_ROOT = Path(__file__).resolve().parent.parent
RESULTS_DIR = Path(__file__).parent / "results"
CLT_SAVE_PATH = Path(__file__).parent / "models" / "clt_model.pth"
STATS_SAVE_PATH = RESULTS_DIR / "clt_training_stats.json"
PLOT_SAVE_PATH = RESULTS_DIR / "clt_training_loss.png"
DOLMA_DIR = PROJECT_ROOT / "influence_tracer" / "dolma_dataset_sample_1.6v"
# Configure logging.
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Set the device for training.
if torch.backends.mps.is_available():
DEVICE = torch.device("mps")
logger.info("Using MPS (Metal Performance Shaders) for GPU acceleration")
elif torch.cuda.is_available():
DEVICE = torch.device("cuda")
logger.info("Using CUDA for GPU acceleration")
else:
DEVICE = torch.device("cpu")
logger.info("Using CPU")
@dataclass
class AttributionGraphConfig:
# Configuration for building the attribution graph.
model_path: str = "./models/OLMo-2-1124-7B"
max_seq_length: int = 128
n_features_per_layer: int = 512 # Back to 512 due to memory constraints
sparsity_lambda: float = 1e-3 # Reduced from 0.01 for L1
reconstruction_loss_weight: float = 1.0
batch_size: int = 16 # Can be higher with 512 features
learning_rate: float = 3e-4 # Increased from 1e-4
training_steps: int = 1500 # Increased from 500
device: str = str(DEVICE)
class JumpReLU(nn.Module):
# JumpReLU activation function.
def __init__(self, threshold: float = 0.0):
super().__init__()
self.threshold = threshold
def forward(self, x):
return F.relu(x - self.threshold)
class CrossLayerTranscoder(nn.Module):
# The Cross-Layer Transcoder (CLT) model.
def __init__(self, model_config: Dict, clt_config: AttributionGraphConfig):
super().__init__()
self.config = clt_config
self.model_config = model_config
self.n_layers = model_config['num_hidden_layers']
self.hidden_size = model_config['hidden_size']
self.n_features = clt_config.n_features_per_layer
self.encoders = nn.ModuleList([
nn.Linear(self.hidden_size, self.n_features, bias=False)
for _ in range(self.n_layers)
])
self.decoders = nn.ModuleDict()
for source_layer in range(self.n_layers):
for target_layer in range(source_layer, self.n_layers):
key = f"{source_layer}_to_{target_layer}"
self.decoders[key] = nn.Linear(self.n_features, self.hidden_size, bias=False)
self.activation = JumpReLU(threshold=0.0)
self._init_weights()
def _init_weights(self):
for module in self.modules():
if isinstance(module, nn.Linear):
# Improved initialization (Xavier/Glorot)
nn.init.xavier_uniform_(module.weight, gain=0.1)
def encode(self, layer_idx: int, residual_activations: torch.Tensor) -> torch.Tensor:
return self.activation(self.encoders[layer_idx](residual_activations))
def decode(self, source_layer: int, target_layer: int, feature_activations: torch.Tensor) -> torch.Tensor:
key = f"{source_layer}_to_{target_layer}"
return self.decoders[key](feature_activations)
def forward(self, residual_activations: List[torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
feature_activations = [self.encode(i, r) for i, r in enumerate(residual_activations)]
reconstructed_mlp_outputs = []
for target_layer in range(self.n_layers):
reconstruction = torch.zeros_like(residual_activations[target_layer])
for source_layer in range(target_layer + 1):
reconstruction += self.decode(source_layer, target_layer, feature_activations[source_layer])
reconstructed_mlp_outputs.append(reconstruction)
return feature_activations, reconstructed_mlp_outputs
class TrainingPipeline:
# A pipeline for training the CLT model.
def __init__(self, config: AttributionGraphConfig):
self.config = config
self.device = torch.device(config.device)
logger.info(f"Loading OLMo model from {config.model_path}")
self.tokenizer = AutoTokenizer.from_pretrained(config.model_path)
# Configure model loading based on the device.
model_args = {'torch_dtype': torch.float16 if "cpu" not in config.device else torch.float32}
if "cuda" in config.device:
model_args['device_map'] = "auto"
self.model = AutoModelForCausalLM.from_pretrained(config.model_path, **model_args).to(self.device)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
model_config = self.model.config.to_dict()
self.clt = CrossLayerTranscoder(model_config, config).to(self.device)
logger.info("Training Pipeline initialized successfully")
def load_dolma_data(self, buffer_size=10000):
"""Generator that yields text samples from the Dolma dataset with shuffling."""
json_files = glob.glob(str(DOLMA_DIR / "*.json"))
if not json_files:
logger.error(f"No JSON files found in {DOLMA_DIR}")
raise FileNotFoundError(f"No training data found in {DOLMA_DIR}")
logger.info(f"Found {len(json_files)} training files in {DOLMA_DIR}")
random.shuffle(json_files)
buffer = []
while True:
for file_path in json_files:
try:
# Use a larger buffer size for reading
with open(file_path, 'r', buffering=8192*1024) as f:
for line in f:
try:
doc = json.loads(line)
text = doc.get('text', '')
if len(text) > 100: # Filter very short texts
buffer.append(text)
if len(buffer) >= buffer_size:
random.shuffle(buffer)
yield from buffer
buffer = []
except json.JSONDecodeError:
continue
except Exception as e:
logger.warning(f"Error reading {file_path}: {e}")
# Yield remaining items in buffer
if buffer:
random.shuffle(buffer)
yield from buffer
buffer = []
# Shuffle and restart for next epoch
random.shuffle(json_files)
def train_clt(self) -> Dict:
# Trains the Cross-Layer Transcoder.
logger.info("Starting CLT training...")
optimizer = torch.optim.Adam(self.clt.parameters(), lr=self.config.learning_rate)
scheduler = CosineAnnealingLR(optimizer, T_max=self.config.training_steps, eta_min=1e-6)
stats = {
'reconstruction_losses': [],
'sparsity_losses': [],
'total_losses': []
}
self.clt.train()
progress_bar = tqdm(range(self.config.training_steps), desc="Training CLT")
data_generator = self.load_dolma_data()
for step in progress_bar:
# Sample a batch of texts.
batch_texts = []
try:
for _ in range(self.config.batch_size):
batch_texts.append(next(data_generator))
except StopIteration:
logger.warning("Data generator ran out of data!")
break
# Tokenize all texts at once (True batch processing)
inputs = self.tokenizer(
batch_texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.config.max_seq_length
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states[1:]
feature_activations, reconstructed_outputs = self.clt(hidden_states)
# --- Loss calculation ---
# Recon loss: Sum over batch, then average later implicitly via batch division or explicit mean
# To match previous scale: sum of MSE per sample
recon_loss = sum(F.mse_loss(pred, target) for target, pred in zip(hidden_states, reconstructed_outputs))
# L1 Sparsity Loss (Better than tanh)
sparsity_loss = sum(torch.mean(torch.abs(features)) for features in feature_activations)
loss = (self.config.reconstruction_loss_weight * recon_loss +
self.config.sparsity_lambda * sparsity_loss)
# Backward pass
optimizer.zero_grad()
loss.backward()
# Gradient Clipping (New)
torch.nn.utils.clip_grad_norm_(self.clt.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step() # Learning Rate Schedule
# Normalize losses for logging (divide by number of layers approx or keep as sum)
# Previous code accumulated and then divided by batch size.
# Here F.mse_loss is mean over batch by default?
# F.mse_loss(input, target) -> mean over all elements.
# So recon_loss is sum(mean_mse_per_layer).
# This is fine, scale is consistent.
stats['total_losses'].append(loss.item())
stats['reconstruction_losses'].append(recon_loss.item())
stats['sparsity_losses'].append(sparsity_loss.item())
if step % 10 == 0:
progress_bar.set_postfix({
"Total": f"{loss.item():.4f}",
"Recon": f"{recon_loss.item():.4f}",
"Sparsity": f"{sparsity_loss.item():.4f}",
"LR": f"{scheduler.get_last_lr()[0]:.2e}"
})
logger.info("CLT training completed.")
return stats
def save_clt(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(self.clt.state_dict(), path)
logger.info(f"CLT model saved to {path}")
def plot_training_stats(stats_path: str, save_path: str):
# Loads training stats and generates a plot.
logger.info(f"Loading training stats from {stats_path}")
with open(stats_path, 'r') as f:
stats = json.load(f)
plt.style.use('seaborn-v0_8-darkgrid')
fig, ax1 = plt.subplots(figsize=(12, 6))
steps = range(len(stats['total_losses']))
color = 'tab:red'
ax1.set_xlabel('Training Steps')
ax1.set_ylabel('Total & Reconstruction Loss', color=color)
ax1.plot(steps, stats['total_losses'], color=color, label='Total Loss', alpha=0.9, linewidth=2)
ax1.plot(steps, stats['reconstruction_losses'], color='tab:blue', linestyle='--', label='Reconstruction Loss', alpha=1.0)
ax1.tick_params(axis='y', labelcolor=color)
ax1.grid(True, which='major', linestyle='--', linewidth='0.5', color='grey')
ax2 = ax1.twinx()
color2 = 'tab:green'
ax2.set_ylabel('Sparsity Loss (L1)', color=color2)
ax2.plot(steps, stats['sparsity_losses'], color=color2, linestyle=':', label='Sparsity Loss')
ax2.tick_params(axis='y', labelcolor=color2)
ax2.grid(True, which='major', linestyle=':', linewidth='0.5', color='darkgrey')
# Combine legends into a single box.
lines, labels = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc='center right', frameon=True, facecolor='white', framealpha=0.8, edgecolor='grey')
logger.info(f"Full training plot saved to {save_path}")
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
def main():
# Main function to handle training and plotting.
# --- Argument Parser ---
parser = argparse.ArgumentParser(description="Train CLT model and/or plot training stats.")
parser.add_argument(
'--skip-training',
action='store_true',
help="Skip the training process and only generate the plot from existing stats."
)
args = parser.parse_args()
# Set a seed for reproducibility.
set_seed()
# Config is now updated with improvements
config = AttributionGraphConfig()
try:
pipeline = TrainingPipeline(config)
logger.info("Training Pipeline initialized successfully")
if not args.skip_training:
# Train the Cross-Layer Transcoder using Dolma dataset
training_stats = pipeline.train_clt()
os.makedirs(RESULTS_DIR, exist_ok=True)
with open(STATS_SAVE_PATH, 'w') as f:
json.dump(training_stats, f, indent=2)
logger.info(f"Saved training stats to {STATS_SAVE_PATH}")
pipeline.save_clt(CLT_SAVE_PATH)
else:
logger.info("--skip-training flag is set. Loading existing stats for plotting.")
# Always plot, using either new or existing stats.
if os.path.exists(STATS_SAVE_PATH):
plot_training_stats(STATS_SAVE_PATH, PLOT_SAVE_PATH)
else:
logger.error(f"Statistics file not found at {STATS_SAVE_PATH}. Cannot generate plot. Run training first.")
print("\n🎉 CLT training and plotting completed successfully!")
except Exception as e:
logger.error(f"❌ Error during execution: {e}", exc_info=True)
if __name__ == "__main__":
main()
|